Phân tích đa thức sau thành nhân tử:
(x^2+x+1).(x^2+x+2)-12
Bài 1 : Phân tích các đa thức sau thành nhân tử :
1) 15x + 15y 2) 8x - 12y
3) xy - x 4) 4x^2- 6x
Bài 2 : Phân tích các đa thức sau thành nhân tử :
1) 2(x + y) - 5a(x + y) 2) a^2(x - 5) - 3(x - 5)
3) 4x(a - b) + 6xy(a - b) 4) 3x(x - 1) + 5(x -1)
Bài 3 : Tính giá trị của biểu thức :
1) A = 13.87 + 13.12 + 13
2) B = (x - 3).2x + (x - 3).y tại x = 13 và y = 4
Bài 4 : Tìm x :
1) x(x - 5) - 2(x - 5) = 0 2) 3x(x - 4) - x + 4 = 0
3) x(x - 7) - 2(7 - x) = 0 4) 2x(2x + 3) - 2x - 3 = 0
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
phân tích đa thức thành nhân tử (x^2 + x + 1)(x^2 + x + 2) - 12
Ta có: \(\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)+2-12\)
\(=\left(x^2+x\right)^2+3\left(x^2+x\right)-10\)
\(=\left(x^2+x+5\right)\left(x^2+x-2\right)\)
\(=\left(x^2+x+5\right)\left(x+2\right)\left(x-1\right)\)
Phân tích đa thức sau thành nhân tử :
(x2 + x + 1) (x2 + x + 2) - 12
Đặt x2+x+1=t
Ta có: t(t+1)-12 = t2+t-12 = t2+4t-3t-12 = t(t+4) -3(t+4) =(t-3)(t+4) = (x2+x+1-3)(x2+x+1+4) =(x2+x-2)(x2+x+5).
\(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt: \(x^2+x+1=t\) Khi đó ta có:
\(A=t\left(t+1\right)-12\)
\(=t^2+t-12=\left(t-3\right)\left(t+4\right)\)
Thay trở lại đc:
\(A=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
phân tích đa thức thành nhân tử (x^2+x+1)(x^2+x+2)-12
(x2+x+1)(x2+x+2)-12
=(x2+x+1)[(x2+x+1)+1)-12
=(x2+x+1)2+(x2+x+1)-12
=(x2+x+1)2-3.(x2+x+1)+4.(x2+x+1)-12
=(x2+x+1)(x2+x+1-3)+4.(x2+x+1-3)
=(x2+x+1)(x2+x-2)+4.(x2+x-2)
=(x2+x-2)(x2+x+1+4)
=(x2-x+2x-2)(x2+x+5)
=[x.(x-1)+2.(x-1)](x2+x+5)
=(x-1)(x+2)(x2+x+5)
(x^2+x+1)(x^2+x+2)-12
Đặt x^2+x+1= a ta có
=a^2+a-12
=a^2-3a+4a-12
=(a^2-3a)+(4a-12)
=a(a-3)+4(a-3)
=(a-3)(a+4)
thay x^2+x+1=a ta được
(x^2+x-2)(x^2+x+5)
Bài làm :
Ta có :
(x2+x+1)(x2+x+2)-12
=(x2+x+1)[(x2+x+1)+1)-12
=(x2+x+1)2+(x2+x+1)-12
=(x2+x+1)2-3.(x2+x+1)+4.(x2+x+1)-12
=(x2+x+1)(x2+x+1-3)+4.(x2+x+1-3)
=(x2+x+1)(x2+x-2)+4.(x2+x-2)
=(x2+x-2)(x2+x+1+4)
=(x2-x+2x-2)(x2+x+5)
=[x.(x-1)+2.(x-1)](x2+x+5)
=(x-1)(x+2)(x2+x+5)
Chúc bạn học tốt !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
phân tích đa thức sau thành nhân tử:
(x2+x+1)(x2+x+2)-12
(x2+x+1)(x2+x+2)-12
=\(\left(x^2+x+\frac{3}{2}-\frac{1}{2}\right)\left(x^2+x+\frac{3}{2}+\frac{1}{2}\right)-12\)
=\(\left(x^2+x+\frac{3}{2}\right)^2-\frac{1}{4}-12\)
=\(\left(x^2+x+\frac{3}{2}\right)^2-\frac{49}{4}\)
=\(\left(x^2+x+\frac{3}{2}-\frac{7}{2}\right)\left(x^2+x+\frac{3}{2}+\frac{7}{2}\right)\)
=\(\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(A=\left(x^2+x+1\right)\left(x^2+x+2\right)-12\)
Đặt: \(x^2+x+1=t\) Khi đó ta có:
\(A=t\left(t+1\right)-12\)
\(=t^2+t-12=\left(t-3\right)\left(t+4\right)\)
Thay trở lại đc:
\(A=\left(x^2+x-2\right)\left(x^2+x+5\right)\)
\(=\left(x-1\right)\left(x+2\right)\left(x^2+x+5\right)\)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức sau thành nhân tử:
(x^2+x+1).(x^2+x+2)-12
lần này thì sửa lại đề
Đặt : u=x2+x+1
Ta có : u(u+1)-12
=u2+u-12
=u2+4u-3u-12
=u(u+4)-3(u+4)
=(u+4)(u-3)
=(x2+x+1+4)(x2+x+1-3)
=(x2+x+5)(x2+x-2)
=(x2+x+5)[(x2+2x)-x-2]
=(x2+x+5)[(x2+2x)-(x+2)]
=(x2+x+5)(x+2)(x-1)
Nhận xét : x2+x+5>0 , với mọi x , nên không phân tích được nữa
Phân tích đa thức sau thành nhân tử ;
a, (x2 + x + 1) . (x2 + x + 2) - 12
Đặt x^2 + x+ 1 = a => x^2 + x + 2 =a + 1
Thay vòa ta có :
a( a+ 1 ) - 12 = a^2 + a - 12 = a^2 + 4a - 3a - 12
=a (a+4) - 3 ( a+ 4 )
= ( a- 3 )(a+4)
Thây x^2 + x + 1 = a vào ta có
(x^2 + x + 1 - 3 )(x^2 + x + 1 + 4 )
= ( x^2 + x - 2 )( x^ 2 + x + 5 )
đặt t=x2+x+1 ta được:
t.(t+1)-12
=t2-t-12
=t2+3x-4t-12
=t.(t+3)-4.(t+3)
=(t+3)(t-4)
thay t=x2+x+1 ta được:
(x2+x+4)(x2+x-3)
vậy (x2 + x + 1) . (x2 + x + 2) - 12=(x2+x+4)(x2+x-3)
Phân tích đa thức thành nhân tử:
(x^2+x+1).(x^2+x+2)-12
Đặt x^2 + x +1 = a
Thay vào ta có :
a(a+1) - 12
= a^2 + a - 12
= a^2 + 4a - 3a - 12
= a(a+4 ) - 3 (a + 4 )
=(a- 3 )(a+4 )
Thay a = x^2 + x + 1 ta có :
= ( x^2 + x + 1 - 3 )(x^2 + x + 1 + 4 )
=(x^2 + x - 2 )(x^2 + x + 5 )