Những câu hỏi liên quan
H24
Xem chi tiết
HP
19 tháng 3 2021 lúc 17:09

\(-x^2-2\left(m-1\right)x+2m-1>0\)

\(\Leftrightarrow x^2+2\left(m-1\right)x-2m+1< 0\)

\(f\left(x\right)=x^2+2\left(m-1\right)x-2m+1\)

Yêu cầu bài toán thỏa mãn khi \(f\left(x\right)=0\) có hai nghiệm phân biệt thỏa mãn \(x_1\le0< 1\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m-1\right)^2+2m-1>0\\f\left(1\right)\le0\\f\left(0\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2>0\\1+2\left(m-1\right)-2m+1\le0\\-2m+1\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m\ge\dfrac{1}{2}\end{matrix}\right.\)

\(\Leftrightarrow m\ge\dfrac{1}{2}\)

Bình luận (0)
My
Xem chi tiết
NL
10 tháng 5 2020 lúc 12:59

1.

- Với \(x\ge\frac{1}{2}\Rightarrow2x-1\le x+2\Rightarrow x\le3\Rightarrow\frac{1}{2}\le x\le3\)

- Với \(x< \frac{1}{2}\Rightarrow1-2x\le x+2\Rightarrow3x\ge-1\Rightarrow x\ge-\frac{1}{3}\)

Vậy nghiệm của BPT là \(-\frac{1}{3}\le x\le3\)

2.

Để pt có 2 nghiệm trái dấu

\(\Leftrightarrow ac< 0\Leftrightarrow\left(m+2\right)\left(2m-3\right)< 0\Rightarrow-2< m< \frac{3}{2}\)

3.

\(5x-1>\frac{2x}{5}+3\Leftrightarrow5x-\frac{2x}{5}>4\Leftrightarrow\frac{23}{5}x>4\Rightarrow x>\frac{20}{23}\)

4.

\(4x^2+4x+1-3x+9>4x^2+10\)

\(\Leftrightarrow x>0\)

5.

\(1< \frac{1}{1-x}\Leftrightarrow\frac{1}{1-x}-1>0\Leftrightarrow\frac{x}{1-x}>0\Rightarrow0< x< 1\)

6.

\(\frac{\left(x-5\right)^2\left(x-3\right)}{x+1}\le0\Rightarrow\left[{}\begin{matrix}x=5\\-1< x\le3\end{matrix}\right.\)

Bình luận (0)
EC
Xem chi tiết
AT
29 tháng 4 2020 lúc 18:39

a/ từ yc đề bài => \(2x^2+\left(m-1\right)x+1-m\ge0\)

nghiệm đúng với mọi x thuộc R

=> \(\Delta\le0\Leftrightarrow\left(m-1\right)^2-4\cdot2\left(1-m\right)\le0\)

\(\Leftrightarrow m^2+2m-7\le0\)

\(\Leftrightarrow m\in\left[-1-2\sqrt{2};-1+2\sqrt{2}\right]\)

b/ x2 - (2m-1)x + 2m-2 = 0

để pt có 2 nghiệm pb => \(\Delta>0\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)>0\)

\(\Leftrightarrow4m^2-12m+9>0\Leftrightarrow\left(2m-3\right)^2>0\Leftrightarrow m\ne\frac{3}{2}\)

=> Gọi 2 nghiệm của pt là x1, x2 (x1<x2)

tập nghiệp của bpt đề cho là: \(S=\left[x_1;x_2\right]\)

theo viet: \(\left\{{}\begin{matrix}x_1+x_2=2m-1\\x_1x_2=2m-2\end{matrix}\right.\)

Theo đề ta có: \(\left|x_1-x_2\right|=5\)

\(\Leftrightarrow\left(x_1-x_2\right)^2=25\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=25\)

\(\Leftrightarrow\left(2m-1\right)^2-4\left(2m-2\right)=25\)

\(\Leftrightarrow4m^2-12m-16=0\Leftrightarrow\left[{}\begin{matrix}m=4\\m=-1\end{matrix}\right.\)(tm)

vậy......

Bình luận (0)
H24
Xem chi tiết
NL
18 tháng 6 2020 lúc 22:30

- Với \(m=2\) BPT luôn có nghiệm \(x\ge-\frac{2}{3}\) (ktm)

- Với \(m\ne2\) để BPT vô nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-2< 0\\\Delta'=\left(m+1\right)^2-2m\left(m-2\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\-m^2+6m+1< 0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}m< 2\\\left[{}\begin{matrix}m>3+\sqrt{10}\\m< 3-\sqrt{10}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m< 3-\sqrt{10}\)

Bình luận (0)
H24
Xem chi tiết
HP
19 tháng 3 2021 lúc 17:42

1.

ĐKXĐ: \(x=2\)

Xét \(x=2\), bất phương trình vô nghiệm

\(\Rightarrow\) bất phương trình đã cho vô nghiệm

\(\Rightarrow\) Không tồn tại \(a,b\) thỏa mãn

Đề bài lỗi chăng.

Bình luận (0)
PB
Xem chi tiết
CT
17 tháng 4 2018 lúc 4:17

Chọn D

Bpt đã cho tương đương với ( 2m+1) x  5-m  (*)

TH1: Với m> -1/2, bpt (*) trở thành: 

Tập nghiệm của bpt là 

Để bpt đã cho nghiệm đúng với mọi x:

Hay 

TH2: nếu m= -1/2 , bpt (*) trở thành: 0x ≥ 5+1/2

Bpt vô nghiệm => không có m  thòa mãn

TH3: Với m< -1/2, bpt (*) trở thành: 

Tập nghiệm của bpt là 

Để bpt đã cho nghiệm đúng với 0< x< 1 thì

Hay 

Kết hợp điều kiện m< -1/2  nên không có m  thỏa mãn

Vậy với m 5, bất phương trình đã cho nghiệm đúng với mọi x: 0< x< 1

Bình luận (0)
HB
Xem chi tiết
HB
Xem chi tiết
PB
Xem chi tiết
CT
12 tháng 11 2018 lúc 7:31

Chọn A

Bình luận (0)