\(\dfrac{m}{2}-5\) và \(\dfrac{n}{2}-5\)
\(\dfrac{1}{m}+\dfrac{1}{n}+\dfrac{1}{p}=5\)và \(\dfrac{1}{m^2}+\dfrac{1}{n^2}+\dfrac{1}{p^2}=5\)
( m,n,p ≠0) CM m+n+p=mnp
(1/m+1/n+1/p)^2=25
=>1/m^2+1/n^2+1/p^2+2(1/mn+1/pn+1/mp)=25
=>\(5+2\cdot\dfrac{m+n+p}{mnp}=25\)
=>\(2\cdot\dfrac{m+n+p}{mnp}=20\)
=>\(\dfrac{m+n+p}{mnp}=10\)
=>m+n+p=10mnp
m < n, so sánh \(\dfrac{m}{2}-5\) và \(\dfrac{n}{2}-5\).
`m<n`
`=>m/2<n/2`
`=>m/2-5<n/2-5`
Bài này dễ mà :v
Giải:
Ta có: \(m< n\)
\(\Rightarrow\dfrac{m}{2}< \dfrac{n}{2}\)
\(\Rightarrow\dfrac{m}{2}-5< \dfrac{n}{2}-5\)
Lớp 6 cx có thể giải đc :)
M=\(\dfrac{1}{1.5}\)+\(\dfrac{2}{5.13}\)+\(\dfrac{3}{12.25}\)+\(\dfrac{4}{25.41}\) và N=\(\dfrac{2}{1.7}\)+ \(\dfrac{3}{7.16}\)+\(\dfrac{4}{16.28}\)+\(\dfrac{5}{28.43}\)+\(\dfrac{6}{43.61}\)
so sánh M và N
M=1/4(4/1*5+8/5*13+...+16/25*41)
=1/4(1-1/5+1/5-1/13+...+1/25-1/41)
=40/41*1/4=10/41
\(N=\dfrac{1}{3}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{16}+...+\dfrac{1}{43}-\dfrac{1}{61}\right)=\dfrac{1}{3}\cdot\dfrac{60}{61}=\dfrac{20}{61}\)
=>M<N
Bài 1: Tìm x; y ϵ \(ℤ\)
a) 2x - y\(\sqrt{6}\) = 5 + (x + 1)\(\sqrt{6}\)
b) 5x + y - (2x -1)\(\sqrt{7}\) = y\(\sqrt{7}\) + 2
Bài 2: So sánh M và N
M = \(\dfrac{\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{3}{7}-\dfrac{3}{11}}{\dfrac{6}{4}+\dfrac{6}{5}+\dfrac{6}{7}-\dfrac{6}{11}}\)
N = \(\dfrac{\dfrac{2}{3}+\dfrac{2}{5}-\dfrac{2}{7}-\dfrac{2}{11}}{\dfrac{6}{2}+\dfrac{6}{5}-\dfrac{6}{7}-\dfrac{6}{11}}\)
Bài 3: Chứng minh:
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
Bài 3 :
\(\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}\)
\(\dfrac{1}{2!}=\dfrac{1}{2.1}=1-\dfrac{1}{2}< 1\)
\(\dfrac{1}{3!}=\dfrac{1}{3.2.1}=1-\dfrac{1}{2}-\dfrac{1}{3}< 1\)
\(\dfrac{1}{4!}=\dfrac{1}{4.3.2.1}< \dfrac{1}{3!}< \dfrac{1}{2!}< 1\)
.....
\(\)\(\dfrac{1}{2023!}=\dfrac{1}{2023.2022....2.1}< \dfrac{1}{2022!}< ...< \dfrac{1}{2!}< 1\)
\(\Rightarrow\dfrac{1}{2!}+\dfrac{1}{3!}+\dfrac{1}{4!}+...+\dfrac{1}{2023!}< 1\)
@Nguyễn Đức Trí: Đề bài nó như vậy mà
Bài 1.
a, Cho\(\dfrac{a}{3}\)=\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\) và a+b+c=24. Tính M = a.b + b.c + ca
b, Cho\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)= \(\dfrac{c}{4}\)=\(\dfrac{d}{5}\) và a+b+c+d = -42. Tính N = a.b +c.d
Bài 2.
a, Biết\(\dfrac{x}{2}\)=\(\dfrac{y}{3}\)=\(\dfrac{z}{4}\) và x+y+z= 24. Tính A = 3x + 2y - 6z
b, Biết\(\dfrac{x}{5}\)=\(\dfrac{y}{6}\)=\(\dfrac{z}{7}\) và x-y+z = 6\(\sqrt{2}\). Tính B = xy - yz
2:
a: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y+z}{2+3+4}=\dfrac{24}{9}=\dfrac{8}{3}\)
=>x=16/3; y=8; z=32/3
A=3x+2y-6z
=3*16/3+2*8-6*32/3
=16+16-64
=-32
b: Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{x}{5}=\dfrac{y}{6}=\dfrac{z}{7}=\dfrac{x-y+z}{5-6+7}=\dfrac{6\sqrt{2}}{6}=\sqrt{2}\)
=>x=5căn 2; y=6căn 2; y=7căn 2
B=xy-yz
=y(x-z)
=6căn 2(5căn 2-7căn 2)
=-6căn 2*2căn 2
=-24
bài 1 a)áp dụng dãy tỉ số bằng nhau ta có:\(\dfrac{a+b+c}{3+4+5}\)=\(\dfrac{24}{12}\)=2
a=2.3=6 ; b=2.4=8 ;c=2.5=10
M=ab+bc+ac=6.8+8.10+6.10=48+80+60=188
"nhưng bài còn lại làm tương tự"
1) So sánh
\(M=\dfrac{24.5^4+5^4.26
}{5^3.15}\) và \(N=\dfrac{-25}{-2}\)
\(M=\dfrac{5^4\cdot50}{5^3\cdot15}=\dfrac{50}{3}>\dfrac{50}{4}=N\)
k) 8 - \(\dfrac{x-2}{2}\) = \(\dfrac{x}{4}\)
m) \(\dfrac{3x+2}{2}\) - \(\dfrac{3x+1}{6}\) = 2x + \(\dfrac{5}{3}\)
n) \(\dfrac{x+1}{7}\)+ \(\dfrac{x+2}{6}\) = \(\dfrac{x+3}{5}\) + \(\dfrac{x+4}{4}\)
o) \(\dfrac{x+5}{6}\) + \(\dfrac{x+6}{5}\) = x + 9
\(\begin{array}{l} n) \Leftrightarrow \dfrac{{x + 1}}{7} + 1 + \dfrac{{x + 2}}{6} + 1 = \dfrac{{x + 3}}{5} + 1 + \dfrac{{x + 4}}{4} + 1\\ \Leftrightarrow \dfrac{{x + 8}}{7} + \dfrac{{x + 8}}{6} - \dfrac{{x + 8}}{5} - \dfrac{{x + 8}}{4} = 0\\ \Leftrightarrow \left( {x + 8} \right)\underbrace {\left( {\dfrac{1}{7} + \dfrac{1}{8} - \dfrac{1}{5} - \dfrac{1}{6}} \right)}_{ < 0} = 0\\ \Leftrightarrow x + 8 = 0\\ \Leftrightarrow x = - 8 \end{array}\)
k/
\(8-\dfrac{x-2}{3}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{96}{12}-\dfrac{4\left(x-2\right)}{12}=\dfrac{3x}{12}\)
\(\Leftrightarrow96-4x+8=3x\)
\(\Leftrightarrow96-4x+8-3x=0\)
\(\Leftrightarrow104-7x=0\)
\(\Leftrightarrow7x=104\)
\(\Leftrightarrow x=104:7\)
\(\Leftrightarrow x=\dfrac{104}{7}\)
Vậy tập nghiệm của phương trình là \(S=\left\{\dfrac{104}{7}\right\}\)
m/
\(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1-12x-10=0\)
\(\Leftrightarrow-6x-5=0\)
\(\Leftrightarrow-6x=5\)
\(\Leftrightarrow x=-\dfrac{5}{6}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{5}{6}\right\}\)
k) Ta có: \(8-\dfrac{x-2}{2}=\dfrac{x}{4}\)
\(\Leftrightarrow\dfrac{32}{4}-\dfrac{2\left(x-2\right)}{4}=\dfrac{x}{4}\)
\(\Leftrightarrow32-2x+4-x=0\)
\(\Leftrightarrow28-x=0\)
hay x=28
Vậy: S={28}
m) Ta có: \(\dfrac{3x+2}{2}-\dfrac{3x+1}{6}=2x+\dfrac{5}{3}\)
\(\Leftrightarrow\dfrac{3\left(3x+2\right)}{6}-\dfrac{3x+1}{6}=\dfrac{12x}{6}+\dfrac{10}{6}\)
\(\Leftrightarrow9x+6-3x-1=12x+10\)
\(\Leftrightarrow6x+5-12x-10=0\)
\(\Leftrightarrow-6x=5\)
hay \(x=-\dfrac{5}{6}\)
Vậy: \(S=\left\{-\dfrac{5}{6}\right\}\)
n) Ta có: \(\dfrac{x+1}{7}+\dfrac{x+2}{6}=\dfrac{x+3}{5}+\dfrac{x+4}{4}\)
\(\Leftrightarrow\dfrac{x+1}{7}+1+\dfrac{x+2}{6}+1=\dfrac{x+3}{5}+1+\dfrac{x+4}{4}+1\)
\(\Leftrightarrow\dfrac{x+8}{7}+\dfrac{x+8}{6}=\dfrac{x+8}{5}+\dfrac{x+8}{4}\)
\(\Leftrightarrow\dfrac{x+8}{7}+\dfrac{x+8}{6}-\dfrac{x+8}{5}-\dfrac{x+8}{4}=0\)
\(\Leftrightarrow\left(x+8\right)\left(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{5}-\dfrac{1}{4}\right)=0\)
mà \(\dfrac{1}{7}+\dfrac{1}{6}-\dfrac{1}{5}-\dfrac{1}{4}\ne0\)
nên x+8=0
hay x=-8
Vậy: S={-8}
1. Cho N=\(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{60}\)
CMR \(\dfrac{3}{5}< N< \dfrac{4}{5}\)
2. Cho M=\(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{29}{3^{29}}-\dfrac{30}{3^{30}}\)
CMR \(M< \dfrac{3}{16}\)
3. Cho Q=\(\dfrac{2}{3}+\dfrac{8}{9}+\dfrac{26}{27}+...+\dfrac{3^{2021}-1}{3^{2021}}\)
CMR \(Q>\dfrac{4041}{2}\)
Cho: \(M=\dfrac{1}{11}+\dfrac{1}{12}+\dfrac{1}{13}+...+\dfrac{1}{19}+\dfrac{1}{20}\) ; \(N=\dfrac{5^2}{5.10}+\dfrac{5^2}{10.15}+...+\dfrac{5^2}{2000.2005}+\dfrac{5^2}{2005.2010}\)
a) Tính tổng N
b) So sánh M và N
Các bạn giải ra từng bước dùm mik nha
Thanks m.n