Những câu hỏi liên quan
UI
Xem chi tiết
PQ
1 tháng 1 2020 lúc 18:14

<3 

Cần CM: \(\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}a-\frac{27}{16}\)\(\left(0< a< 1\right)\)

thaajt vậy, bđt \(\Leftrightarrow\)\(\left(a-\frac{1}{3}\right)^2\left(15a^2-38a+27\right)\ge0\) đúng 

\(\Sigma\frac{a}{\left(b+c\right)^3}=\Sigma\frac{a}{\left(1-a\right)^3}\ge\frac{135}{16}\left(a+b+c\right)-\frac{81}{16}=\frac{27}{8}\)

dấu "=" xảy ra khi a=b=c=1 

Bình luận (0)
 Khách vãng lai đã xóa
PQ
1 tháng 1 2020 lúc 18:15

à nhầm, \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
RV
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
NT
1 tháng 10 2017 lúc 19:39

easy

\(VT\ge\frac{8}{\left(a+b\right)^2+\left(a+b\right)^2c}+\frac{8}{\left(b+c\right)^2+\left(b+c\right)^2c}+\frac{8}{\left(c+a\right)^2+\left(c+a\right)^2b}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

\(=\frac{8}{\left(a+b\right)^2\left(c+1\right)}+\frac{8}{\left(b+c\right)^2\left(a+1\right)}+\frac{8}{\left(c+a\right)^2\left(b+1\right)}+\frac{\left(a+b\right)^2}{4}+\frac{\left(b+c\right)^2}{4}+\frac{\left(c+a\right)^2}{4}\)

đến đây ghép rồi dùng cô si

bài này trong đề thi của tỉnh nào đó ở nước nào đó ở hành tinh nào đó năm 2016-2017

Bình luận (0)
TB
13 tháng 4 2019 lúc 22:54

bạn làm luôn khúc sau dùm mik nhé, mik ko hiểu

Bình luận (0)
KN
10 tháng 7 2020 lúc 19:43

Ta có bất đẳng thức quen thuộc sau \(4ab\le\left(a+b\right)^2\). Như vậy thì:\(\frac{8}{\left(a+b\right)^2+4abc}\ge\frac{8}{\left(a+b\right)^2+c\left(a+b\right)^2}\)\(=\frac{8}{\left(c+1\right)\left(a+b\right)^2}\)

 Lại có \(a^2+b^2\ge\frac{\left(a+b\right)^2}{2}\)nên \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\)\(\ge\frac{8}{\left(c+1\right)\left(a+b\right)^2}+\frac{\left(a+b\right)^2}{4}\ge\frac{2\sqrt{2}}{\sqrt{c+1}}\)(Theo BĐT AM - GM)

Lại áp dụng BĐT AM - GM, ta được: \(\frac{2\sqrt{2}}{\sqrt{c+1}}=\frac{8}{2\sqrt{2\left(c+1\right)}}\ge\frac{8}{c+3}\)

Từ đó suy ra \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{a^2+b^2}{2}\ge\frac{8}{c+3}\)(1)

Tương tự, ta có: \(\frac{8}{\left(b+c\right)^2+4abc}+\frac{b^2+c^2}{2}\ge\frac{8}{a+3}\)(2) ; \(\frac{8}{\left(c+a\right)^2+4abc}+\frac{c^2+a^2}{2}\ge\frac{8}{b+3}\)(3)

Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{8}{\left(a+b\right)^2+4abc}+\frac{8}{\left(b+c\right)^2+4abc}+\frac{8}{\left(c+a\right)^2+4abc}\)\(+a^2+b^2+c^2\ge\frac{8}{a+3}+\frac{8}{b+3}+\frac{8}{c+3}\)

Đẳng thức xảy ra khi a = b = c = 1

Bình luận (0)
 Khách vãng lai đã xóa
NC
Xem chi tiết
LC
Xem chi tiết
ZZ
8 tháng 1 2020 lúc 21:49

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)+abc\)

\(=abc+a^2b+ab^2+a^2c+ac^2+b^2c+bc^2+abc+abc\)

\(=\left(a+b+c\right)\left(ab+bc+ca\right)\)( phân tích nhân tử các kiểu )

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\left(a+b+c\right)\left(ab+bc+ca\right)-abc\left(1\right)\)

\(a+b+c\ge3\sqrt[3]{abc};ab+bc+ca\ge3\sqrt[3]{a^2b^2c^2}\Rightarrow\left(a+b+c\right)\left(ab+bc+ca\right)\ge9abc\)

\(\Rightarrow-abc\ge\frac{-\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

Khi đó:\(\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)

\(\ge\left(a+b+c\right)\left(ab+bc+ca\right)-\frac{\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\)

\(=\frac{8\left(a+b+c\right)\left(ab+bc+ca\right)}{9}\left(2\right)\)

Từ ( 1 ) và ( 2 ) có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
PV
Xem chi tiết
PH
28 tháng 8 2017 lúc 21:09

đặt a=x/y b=y/z c=z/x thay vào rút gọn ra nesbit

Bình luận (0)
QL
Xem chi tiết
H24
11 tháng 11 2019 lúc 22:45

Xét vế trái: Bạn nhân cả tử và mẫu với lần lượt là b^2.c^2; c^2.a^2; a^2.b^2

=> cái mẫu thành lần lượt là a(b+c); b(c+a); c(a+b) do abc=1=> a^2.b^2.c^2=1 và tử lần lượt là b^2.c^2; c^2.a^2; a^2.b^2

xong áp dụng cauchy schwarz thôi => vế trái >= (ab+bc+ca)^2/2(ab+bc+ca)=(ab+bc+ca)/2=(ab+bc+ca)/2abc=1/2a+1/2b+1/2c

=> ĐPCM.

Bình luận (0)
 Khách vãng lai đã xóa
NC
11 tháng 11 2019 lúc 22:58

\(\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{b^2c^2}{a\left(b+c\right)}+\frac{a^2c^2}{b\left(a+c\right)}+\frac{a^2b^2}{c\left(a+b\right)}\)

\(\ge\frac{\left(bc+ac+ab\right)^2}{2\left(ab+ac+bc\right)}\ge\frac{\left(bc+ac+ab\right)}{2}\)

\(=\frac{bc}{2}+\frac{ac}{2}+\frac{ab}{2}=\frac{1}{2a}+\frac{1}{2b}+\frac{1}{2c}\)

Dấu "=" xảy ra <=> a =b = c.

Bình luận (0)
 Khách vãng lai đã xóa
NO
Xem chi tiết
H24
10 tháng 7 2019 lúc 10:17

Bài 1: \(a+\frac{1}{b\left(a-b\right)}=\left(a-b\right)+b+\frac{1}{b\left(a-b\right)}\)

Áp dụng BĐT Cauchy cho 3 số dương ta thu được đpcm (mình làm ở đâu đó rồi mà:)

Dấu "=" xảy ra khi a =2; b =1 (tự giải ra)

Bài 2: Thêm đk a,b,c >0.

Theo BĐT Cauchy \(\frac{a^2}{b^2}+\frac{b^2}{c^2}\ge2\sqrt{\frac{a^2}{c^2}}=\frac{2a}{c}\). Tương tự với hai cặp còn lại và cộng theo vế ròi 6chia cho 2 hai có đpcm.

Bài 3: Nó sao sao ấy ta?

Bình luận (0)