NN

cho a,b,c>0 CMR:\(\frac{a^8+b^8+c^8}{\left(abc\right)^3}\ge\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

TT
28 tháng 8 2015 lúc 7:39

Ta áp dụng bất đẳng thức phụ sau đây liên tiếp: \(x^2+y^2+z^2\ge xy+yz+zx\leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\ge0.\)

Khi đó    \(a^8+b^8+c^8\ge a^4b^4+b^4c^4+c^4a^4\ge a^2b^4c^2+a^2b^2c^4+a^4b^2c^2\)

\(=a^2b^2c^2\left(a^2+b^2+c^2\right)\ge a^2b^2c^2\left(ab+bc+ca\right)\)

Vậy ta có \(a^8+b^8+c^8\ge a^2b^2c^2\left(ab+bc+ca\right)\to\frac{a^8+b^8+c^8}{a^3b^3c^3}\ge\frac{ab+bc+ca}{abc}=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)

Bình luận (0)

Các câu hỏi tương tự
UI
Xem chi tiết
RV
Xem chi tiết
TT
Xem chi tiết
LC
Xem chi tiết
PV
Xem chi tiết
QL
Xem chi tiết
YK
Xem chi tiết
BC
Xem chi tiết
NV
Xem chi tiết