chứng minh rằng nếu n là số nguyên lẻ thì 3n +2 cũng là số nguyên lẻ
Chứng minh rằng với n là số nguyên tố lẻ thì 3n+2 là số nguyên tố
TH1:n=3 => 3n+2=11 là snt
TH2:n>3
+)n=3k+1(k\(\in\)N) => 3n+2=3(3k+1)+2=9k+5 là snt
+)n=3k+2(k\(\in\)N) => 3n+2=3(3k+2)+2=9k+8 là snt
Qua các trường hợp trên ta luôn có đpcm
xét n=4k, 4k+1, 4k+2, 4k+3
lưu ý : số chính phương chia 4 dư 0 hoặc 1
nếu n=11 thì này là hợp số 35. đề bạn lấy ở đâu z
chứng minh rằng nếu n là số nguyên lẻ thì A= n3-3n2-n+21 chia hết cho 6
n3 - 3n2 - n + 21
= n(n2 - 1) - 3(n2 - 7)
= n(n - 1)(n + 1) - 3(n2 - 7)
n lẻ => n2 lẻ => n2 + 7 chẵn => n2 + 7 chia hết cho 2
=> - 3(n2 - 7) chia hết cho 6 (chia hết cho 2 và 3)
mà n(n - 1)(n + 1) chia hết cho 6 (tích 3 số nguyên liên tiếp)
Vậy n3 - 3n2 - n + 21 chia hết cho 6 vs mọi n là số nguyên lẻ (đpcm)
chứng minh rằng nếu n là số nguyên lẻ thì A= n3-3n2-n+21 chia hết cho 6
Chứng minh rằng nếu phải p và q là 2 số nguyên tố thoả mãn
p2-q2=p-3p+2 thì p2+q2 cũng là số nguyên tố
Chứng minh rằng hiệu các bình phương của 2 số lẻ bất kỳ thì chia hết cho 8
Với mọi \(m\inℤ^+\), ta kí hiệu \(\sigma\left(n\right)\) là tổng các ước nguyên dương của \(n\) (bao gồm cả chính nó).
a) Chứng minh rằng, nếu \(\sigma\left(n\right)\) là số lẻ thì \(n=2^r.l^2\) với \(r,l\inℕ\), trong đó \(l\) là số lẻ.
b) Số tự nhiên \(n\) được gọi là "hoàn hảo" khi và chỉ khi \(\sigma\left(n\right)=2n\). CMR nếu \(n\) là số hoàn hảo chẵn thì \(n=2^{m-1}\left(2^m-1\right)\) với \(m\inℕ,m\ge2\) sao cho \(2^m-1\) là số nguyên tố.
Câu đầu tiên của đề bài là "Với mọi \(n\inℤ^+\)..." chứ không phải \(m\) nhé, mình gõ nhầm.
a) Ta phân tích \(n=x_1^{a_1}.x_2^{a_2}...x_m^{a_m}\) (với \(x_1;x_2;..x_n\) là số nguyên tố ;
\(a_1;a_2;..a_m\inℕ^∗\) và là số mũ tối đa của mỗi số nguyên tố )
Khi đó ta có \(\sigma\left(n\right)=\left(a_1+1\right)\left(a_2+1\right)...\left(a_m+1\right)\)
mà \(\sigma\left(n\right)\) lẻ \(\Leftrightarrow\) \(a_1+1;a_2+1;...a_m+1\) lẻ
\(\Leftrightarrow a_1;a_2;..a_m\) chẵn
\(\Leftrightarrow n\) là số chính phương
=> n luôn có dạng \(n=l^2\)
Mặt khác \(x_1;x_2;..x_m\) là số nguyên tố
Nếu \(x_1;x_2;..x_m\) đều là số nguyên tố lẻ thì l lẻ
<=> r = 0 nên n = 2r.l2 đúng (1)
Nếu \(x_1;x_2;..x_m\) tồn tại 1 cơ số \(x_k=2\)
TH1 : \(a_k\) \(⋮2\)
\(\Leftrightarrow a_k+1\) lẻ => \(\sigma\left(n\right)\) lẻ (thỏa mãn giả thiết)
=> n có dạng n = 2r.l2 (r chẵn , l lẻ)(2)
TH2 : ak lẻ
Ta dễ loại TH2 vì khi đó \(a_k+1⋮2\) nên \(\sigma\left(n\right)⋮2\) (trái với giả thiết)
Nếu \(n=2^m\) (m \(⋮2\)) thì r = m ; l = 1 (tm) (3)
Từ (1);(2);(3) => ĐPCM
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
1)cho ba số nguyên tố lớn hơn 3 trong đó số sau lớn hơn số trước là d dơn vị chứng minh rằng d chia hết cho 6
2)hai số nguyên tố gọi là sinh đôi nếu chúng là hai số nguyên tố lẻ lien tiếp chứng minh rằng một số tự nhiên lớn hơn 3 nằm giữa hai số nguyên tố sinh đôi thì chia hết cho 6
3)cho p là số nguyên tố lớn hơn 3 biết p+2 cũng là số nguyên tố chứng minh rằng p+1 chia hết cho 6
3) CM:p+1 chia hết cho 2
vì p lớn hơn 3 suy ra p là số lẻ và p+1 là số chẵn.
Vậy p+1 chia hết cho 2
CM:p+1 chia hết cho 3
Ta có:p x (p+1) x (p+2) chia hết cho 3(vì tích 3 số liên tiếp luôn chia hết cho 3)
Mà p và p+2 là số nguyên tố nên p và p+2 ko chia hết cho 3
Vậy p+1 chia hết cho 3
Mà ƯCLN(2,3) là 1
Vậy p+1 chia hết cho 2x3 là 6
Vậy p+1 chia hết cho 6 với mọi p lớn hơn 3 và p+2 cùng là số nguyên tố.
Chứng minh rằng:
a, Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau
b, Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau
c, 2n+1 và 3n+1 với n ∈ N là hai số nguyên tố cùng nhau
a, Gọi d ∈ ƯC(n,n+1) => (n+1) – 1 ⋮ d => 1 ⋮ d => d = 1. Vậy n, n+1 là hai số nguyên tố cùng nhau
b, Gọi d ∈ ƯC(2n+1,2n+3) => (2n+3) – (2n+1) ⋮ d => 2 ⋮ d => d ∈ {1;2}. Vì d là số lẻ => d = 1 => dpcm
c, Gọi d ∈ ƯC(2n+1,3n+1) => 3.(2n+1) – 2.(3n+1) ⋮ d => 1 ⋮ d => d = 1 => dpcm
Chứng minh rằng:
a) Hai số tự nhiên liên tiếp (khác 0) là hai số nguyên tố cùng nhau.
b) Hai số lẻ liên tiếp là hai số nguyên tố cùng nhau.
c) 2n + 1 và 3n + 1 với n ∈ N là hai số nguyên tố cùng nhau
Đặt (3n+1,2n+1)=₫
=>(2(3n+1(,3(2n+1)=₫
=>(6n+2,6n+3)=₫=>6n+2...₫,6n+3...₫
=>6n+3-6n+2...₫=>1...₫=>₫=1
=>(3n+1,2n+1)=1 nên 3n+1,2n+1laf 2 snt cùng nhau