Những câu hỏi liên quan
AQ
Xem chi tiết
QL
Xem chi tiết
HM
25 tháng 9 2023 lúc 16:30

a) 

Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)

Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.

 

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}} = MH;\;\cos \alpha  = \frac{{OH}}{{OM}} = OH.\)

\( \Rightarrow {\cos ^2}\alpha  + {\sin ^2}\alpha  = O{H^2} + M{H^2} = O{M^2} = 1\)

b) Ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)

c) Với \(\alpha  \ne {90^o}\) ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)

d) Ta có:

\(\begin{array}{l}\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)

Bình luận (0)
NT
Xem chi tiết
H24
27 tháng 4 2022 lúc 20:47

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

Bình luận (0)
DK
Xem chi tiết
MC
22 tháng 7 2021 lúc 16:21

đây nhé

Bình luận (0)
 Khách vãng lai đã xóa
XO
22 tháng 7 2021 lúc 16:20

Ta có a(a + 1) + 1  = a2 + a + 1 = \(a^2+2.\frac{1}{2}a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)(đpcm) 

Bình luận (0)
 Khách vãng lai đã xóa
H24
Xem chi tiết
H24
17 tháng 5 2021 lúc 19:59

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4\left(a+b\right)\)

\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-4a+4+b^2-4b+4\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\) (Luôn đúng)

Vậy đẳng thức ban đầu được chứng minh.

Bình luận (0)
HT
Xem chi tiết
ND
20 tháng 4 2018 lúc 21:01

\(\dfrac{a^2+a+1}{a^2-a+1}=\dfrac{a^2+2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}{a^2-2.a.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}}\)

\(=\dfrac{\left(a+\dfrac{1}{2}\right)^2+\dfrac{3}{4}}{\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}>0\) ( luôn đúng)

Bình luận (0)
TT
Xem chi tiết
TL
1 tháng 4 2015 lúc 22:10

ta có: \(\frac{2a+1}{2a^2+2a}=\frac{2a+1}{2a\left(a+1\right)}\)

nhận xét: 2a  và 2a +1 là 2 số nguyên liên tiếp nên 2a và 2a + 1 không có ước chung nào khác 1; -1          (*)

gọi d = ƯCLN(2a+1; a+1) 

=> 2a+1 chia hết cho d và

     a+ 1 chia hết cho d

=> 2a+ 1 - 2(a+1) = -1 chia hết cho d => d = 1 hoặc -1 => 2a+ 1 và a+ 1 nguyên tố cùng nhau hay chúng ko có ước chung nào khác 1; -1      (**)

Từ (*)(**) => 2a + 1 và 2a.(a+ 1) nguyên tố cùng nhau => phân số đã cho là tối giản

Bình luận (0)
TA
Xem chi tiết
MS
23 tháng 4 2019 lúc 11:48

Ta có: \(a^2+a+1=a^2+a+\frac{1}{4}+\frac{3}{4}=\left(a+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(a^2-a+1=a^2-a+\frac{1}{4}+\frac{3}{4}=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}>0\)

\(\Rightarrow\frac{a^2+a+1}{a^2-a+1}>0\forall a\in R\)

Bình luận (0)
LN
Xem chi tiết