Những câu hỏi liên quan
NN
Xem chi tiết
H9
22 tháng 9 2023 lúc 11:40

Theo đề ta có:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{6}=\dfrac{\widehat{D}}{8}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\) (tổng các góc trong tứ giác)  

Áp dụng tính chất dãy tỉ số bằng nhau ta có: 

\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{6}=\dfrac{\widehat{D}}{8}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{2+4+6+8}=\dfrac{360^o}{20}=18\)

\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=18\cdot2=36^o\\\widehat{B}=18\cdot4=72^o\\\widehat{C}=18\cdot6=108^o\\\widehat{D}=18\cdot8=144^o\end{matrix}\right.\) 

Bình luận (0)
JM
Xem chi tiết
JM
Xem chi tiết
TQ
Xem chi tiết
JM
Xem chi tiết
NM
Xem chi tiết
LC
Xem chi tiết
HP
18 tháng 11 2016 lúc 21:22

Dễ thấy AB=BC=CD=DE

\(ABC\ge CDE=>AC\ge CE\)

Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)

\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)

Cộng theo vế (1) và (2)

\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)

Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều

Bình luận (0)
LC
Xem chi tiết
ND
Xem chi tiết