Tìm x biết 8x - x = 49
bài 1 :tìm x,y biết
a) (5x+1)=\(\dfrac{36}{49}\) b) (x-2/9) = (2/3) c)(8x-1) 2x+1= 5^2 x+1
d) (x-3,5)^x+(y - 1/10)^4=0
`(5x+1)=36/49`
`<=> 5x = 36/49-1`
`<=> 5x = -13/49`.
`<=> x = -13/245.`
Vậy `x = -13/245`.
`b, x-2/9 = 2/3`.
`<=> x = 2/3 + 2/9`
`<=> x = 8/9`.
Vậy `x = 8/9`.
c: (8x-1)^(2x+1)=5^(2x+1)
=>8x-1=5
=>8x=6
=>x=3/4
d: Sửa đề: (x-3,5)^2+(y-1/10)^4=0
=>x-3,5=0 và y-0,1=0
=>x=3,5 và y=0,1
Tìm x, biết:
a) ( 5x+1)^2+36/49
b) (x-2/9)^3=(2/3)^6
c) (8x-1)^2n+1=5^2n+1
Tìm \(x\)
a, \(x^2-10x+25=0\)
b, \(x^2-8x+16=0\)
c, \(x^2-49=0\)
d, \(4x^2-25=0\)
`a, x^2-10x+25=0`
`<=>x^2 -2.x.5+5^2=0`
`<=>(x-5)^2=0`
`<=>x-5=0`
`<=>x=5`
__
`x^2 -8x+16=0`
`<=> x^2 - 2.x.4+4^2=0`
`<=>(x-4)^2=0`
`<=>x-4=0`
`<=>x=4`
__
`x^2-49=0`
`<=>x^2 - 7^2=0`
`<=>(x-7)(x+7)=0`
`<=>x-7=0` hoặc `x+7=0`
`<=> x=7` hoặc `x=-7`
__
`4x^2-25=0`
`<=> (2x)^2 -5^2=0`
`<=>(2x-5)(2x+5)=0`
`<=>2x-5=0` hoặc `2x+5=0`
`<=> 2x=5` hoặc `2x=-5`
`<=>x=5/2` hoặc `x=-5/2`
a: =>(x-5)^2=0
=>x-5=0
=>x=5
b: =>(x-4)^2=0
=>x-4=0
=>x=4
c: =>(x-7)(x+7)=0
=>x-7=0 hoặc x+7=0
=>x=7 hoặc x=-7
d: =>(2x-5)(2x+5)=0
=>2x-5=0 hoặc 2x+5=0
=>x=5/2 hoặc x=-5/2
tìm x 4x mũ 2 - 49 = 0 câu thứ 2 x mũ 2 +36 =12x câu thứ 3 10 (x-5) -8x (5-x0 =0
1. \(4x^2-49=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\Leftrightarrow x=-\dfrac{7}{2}\\2x-7=0\Leftrightarrow x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x=-\dfrac{7}{2}\) hoặc \(x=\dfrac{7}{2}\)
===========
2. \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x=6\)
Vậy: \(x=6\)
===========
3. \(10\left(x-5\right)-8x\left(5-x\right)=0\)
\(\Leftrightarrow10\left(x-5\right)+8x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(10+8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\10+8x=0\Leftrightarrow x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(x=5\) hoặc \(x=-\dfrac{5}{4}\)
1: Ta có: \(4x^2-49=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
2: Ta có: \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\)
hay x=6
Tìm x biết.
a) 4x^2 - 49 = 0 b) x^2 + 36 = 12x
c) 1/16x^2 - x + 4 = 0 d) x^3 -3√3x2 + 9x - 3√3 = 0
e) (x - 2)^2 - 16 = 0 f) x^2 - 5x - 14 = 0
g) 8x(x - 3) + x - 3 = 0
a, 4x2 - 49 = 0
⇔⇔ (2x)2 - 72 = 0
⇔⇔ (2x - 7)(2x + 7) = 0
⇔{2x−7=02x+7=0⇔⎧⎪ ⎪⎨⎪ ⎪⎩x=72x=−72⇔{2x−7=02x+7=0⇔{x=72x=−72
b, x2 + 36 = 12x
⇔⇔ x2 + 36 - 12x = 0
⇔⇔ x2 - 2.x.6 + 62 = 0
⇔⇔ (x - 6)2 = 0
⇔⇔ x = 6
e, (x - 2)2 - 16 = 0
⇔⇔ (x - 2)2 - 42 = 0
⇔⇔ (x - 2 - 4)(x - 2 + 4) = 0
⇔⇔ (x - 6)(x + 2) = 0
⇔{x−6=0x+2=0⇔{x=6x=−2⇔{x−6=0x+2=0⇔{x=6x=−2
f, x2 - 5x -14 = 0
⇔⇔ x2 + 2x - 7x -14 = 0
⇔⇔ x(x + 2) - 7(x + 2) = 0
⇔⇔ (x + 2)(x - 7) = 0
⇔{x+2=0x−7=0⇔{x=−2x=7
a,\(4x^2-49=0\)
\(\Leftrightarrow\left(2x\right)^2-7^2=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}2x-7=0\\2x+7=0\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=7\\2x=-7\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{7}{2}\end{cases}}}\)
b.\(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\Leftrightarrow x=6\)
c.\(\frac{1}{16x^2}-x+4=0\)
\(\Leftrightarrow\left(\frac{1}{4x}\right)^2-2.\frac{1}{4x}.2+2^2=0\)
\(\Leftrightarrow\left(\frac{1}{4x}-2\right)^2=0\)
........
Tìm x biết
(-3/4)^3x -1= 256/81
(5x+1) ^2 =36/49
(X-2/9)^3= (2/6)^6
(8x -1)^2n+1 = 5^2n +1
tìm x
a) 8x -x =49
b) 4 chia hết cho (x-1)
a) \(8x-x=49\)
\(x\left(8-1\right)=49\)
\(7x=49\)
\(x=7\)
b) \(4⋮x-1\)
\(\Rightarrow x-1\inƯ\left(4\right)\)
\(\Rightarrow x-1\in\left\{-4;-2;-1;1;2;4\right\}\)
\(\Rightarrow x\in\left\{-3;-1;0;3;5\right\}\)
a, 8x-x=49
\(\Rightarrow7x=49\)
\(\Rightarrow x=7\)
Vậy x=7
b, Ta có: \(4⋮x-1\)
\(\Rightarrow x-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)
Ta có bảng sau
x-1 | -4 | -2 | -1 | 1 | 2 | 4 |
x | -3 | -1 | 0 | 2 | 3 | 5 |
Vậy....
a, 8x-x=49
x(8-1)=49
7x=49
x=7
Giải phương trình:
a,\(\frac{5-x}{4x^2-8x}+\frac{7}{8x}=\frac{x-1}{2x\left(x-2\right)}+\frac{1}{8x-16}\)
b,\(\frac{x-49}{50}+\frac{x-50}{49}=\frac{49}{x-50}+\frac{50}{x-49}\)
c,\(\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}=\frac{1}{x+3}\)
Bài 1: Tìm x , Biết
a) (x-4) x - (x-3)^2=0
b) 3x-6 = x^2-16
c) (2x-3)^2 - 49=0
d) 2x (x-5) - 7 (5-x)=0
Bài 2: Tìm m để đa thức
A(x)= 2x^3 + x^2 - 4x + m chia hết cho đa thức B(x)= 2x-1
Bài 3 : Phân tích đa thức thành nhân tử
a) x^2 - 8x
b) x^2 - xy - 6x + 6y
Bài 1:
b: \(3x-6=x^2-16\)
\(\Leftrightarrow x^2-3x-10=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)