Những câu hỏi liên quan
TN
Xem chi tiết
H24
20 tháng 7 2021 lúc 17:21

a) \(A=x^2-6x+10=\left(x^2-6x+9\right)+1=\left(x-3\right)^2+1\ge1\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=3\)\(min_A=1\)

b) \(B=3x^2+x-2=3\left(x^2+\dfrac{1}{3}x-\dfrac{2}{3}\right)=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}-\dfrac{25}{36}\right)=3\left(x+\dfrac{1}{6}\right)^2-\dfrac{25}{12}\ge\dfrac{-25}{12}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{1}{6}\)\(min_B=\dfrac{-25}{12}\)

c) \(C=\dfrac{4}{x^2}-\dfrac{3}{x}-1=\left(\dfrac{4}{x^2}-\dfrac{3}{x}+\dfrac{9}{16}\right)-\dfrac{25}{16}=\left(\dfrac{2}{x}+\dfrac{2}{3}\right)^2-\dfrac{25}{16}\ge\dfrac{-25}{16}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x=-3\)\(min_C=\dfrac{-25}{16}\)

d) \(D=x^2+y^2-x+3y+7=\left(x^2-x+\dfrac{1}{4}\right)+\left(y^2+3y+\dfrac{9}{4}\right)+\dfrac{9}{2}=\left(x-\dfrac{1}{2}\right)^2+\left(y+\dfrac{3}{2}\right)^2+\dfrac{9}{2}\ge\dfrac{9}{2}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=\dfrac{-3}{2}\end{matrix}\right.\)\(min_D=\dfrac{9}{2}\)

Bình luận (0)
TN
Xem chi tiết
TN
Xem chi tiết
NT
20 tháng 7 2021 lúc 19:51

e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

Bình luận (0)
TN
Xem chi tiết
H24
15 tháng 7 2021 lúc 9:50

`|x-2|=2x-3(x>=3/2)`

`<=>` \(\left[ \begin{array}{l}x-2=2x-3\\x-2=3-2x\end{array} \right.\) 

`<=>` \(\left[ \begin{array}{l}x=1(l)\\3x=5\end{array} \right.\) 

`<=>x=5/3(Tm(`

`2)A=-x^2+2x+9`

`=-(x^2-2x)+9`

`=-(x^2-2x+1)+1+9`

`=-(x-1)^2+10<=10`

Dấu "=" xảy ra khi `x=1.`

Bình luận (0)
MY
15 tháng 7 2021 lúc 9:52

1,

\(|x-2|=x-2< =>x\ge2\)

\(=>x-2=2x-3< =>x=1\left(ktm\right)\)

*\(\left|x-2\right|=2-x< =>x< 2\)

\(=>2-x=2x-3< =>x=\dfrac{5}{3}\left(tm\right)\)

vậy x=5/3

2, \(A=-x^2+2x+9=-\left(x^2-2x-9\right)=-\left(x^2-2x+1-10\right)\)

\(=-\left[\left(x-1\right)^2-10\right]=-\left(x-1\right)^2+10\le10\)

dấu"=" xảy ra<=>x=1

Bình luận (0)
NT
15 tháng 7 2021 lúc 14:49

Bài 1: 

Ta có: \(\left|x-2\right|=2x-3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=2x-3\left(x\ge2\right)\\2-x=2x-3\left(x< 2\right)\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x-2x=-3+2\\-x-2x=-3-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x=-1\\-3x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(lọai\right)\\x=\dfrac{5}{3}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{\dfrac{5}{3}\right\}\)

Bình luận (0)
TN
Xem chi tiết
H24
21 tháng 7 2021 lúc 8:09

e) E >= 2021 

dấu = xảy ra khi x=1/2

g) G = |x-1|+ |2-x| >= |x-1+2-x|=1

Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2

h) H = |x-1|+|x-2| + |x-3| 

Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2

|x-2| >=0

=> H>=2

Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0

<=> x=2

k) K = |x-1| + |2x-1| 

2K = |2x-2| + |2x-1| + |2x-1|

Ta có : |2x-2| + |2x-1|  = |2x-2| + |1-2x| >= |2x-2+1-2x|=1

|2x-1| >=0 

Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0

<=> x=1/2

Bình luận (0)
CV
21 tháng 7 2021 lúc 8:57

e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)

\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)

Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)

Vậy...

b)G=|x-1|+ |2-x|\(\)

áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)

\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)

\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)

Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)

Vậy...

h)H= |x-1|+|x-2| + |x-3| 

Ta có |x-1| + |x-3|         

=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)       

 =>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)          

<=>|x-1| + |3-x|\(\ge2\forall x\) (1)

Mà |x-2|\(\ge0\forall x\) (2)

Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)

Dấu "=" xảy ra khi x-2=0

<=>x=2

Vậy...

k) K = |x-1| + |2x-1| 

2K = |2x-2| + |2x-1| + |2x-1|

Mà : |2x-2| + |2x-1| 

=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)

Lại có |2x-1| \(\ge\)\(\forall x\)

Dấu "=" xảy ra 2x-1=0

<=>x=\(\dfrac{1}{2}\)

Vậy....

Bình luận (0)
TN
Xem chi tiết
AH
31 tháng 7 2021 lúc 9:46

Lời giải:

a. ĐKXĐ: $x\geq -9$

PT $\Leftrightarrow x+9=7^2=49$

$\Leftrightarrow x=40$ (tm)

b. ĐKXĐ: $x\geq \frac{-3}{2}$

PT $\Leftrightarrow 4\sqrt{2x+3}-\sqrt{4(2x+3)}+\frac{1}{3}\sqrt{9(2x+3)}=15$

$\Leftrightarrow 4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15$

$\Leftrgihtarrow 3\sqrt{2x+3}=15$

$\Leftrightarrow \sqrt{2x+3}=5$

$\Leftrightarrow 2x+3=25$

$\Leftrightarrow x=11$ (tm)

 

Bình luận (0)
AH
31 tháng 7 2021 lúc 9:51

c.

PT \(\Leftrightarrow \left\{\begin{matrix} 2x+1\geq 0\\ x^2-6x+9=(2x+1)^2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ 3x^2+10x-8=0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} x\geq \frac{-1}{2}\\ (3x-2)(x+4)=0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2}{3}\)

d. ĐKXĐ: $x\geq 1$

PT \(\Leftrightarrow \sqrt{(x-1)+4\sqrt{x-1}+4}-\sqrt{(x-1)+6\sqrt{x-1}+9}=9\)

\(\Leftrightarrow \sqrt{(\sqrt{x-1}+2)^2}-\sqrt{(\sqrt{x-1}+3)^2}=9\)

\(\Leftrightarrow \sqrt{x-1}+2-(\sqrt{x-1}+3)=9\)

\(\Leftrightarrow -1=9\) (vô lý)

Vậy pt vô nghiệm.

 

Bình luận (0)
AT
31 tháng 7 2021 lúc 9:53

a) \(\sqrt{x+9}=7\left(x\ge-9\right)\Rightarrow x+9=49\Rightarrow x=40\)

b) \(4\sqrt{2x+3}-\sqrt{8x+12}+\dfrac{1}{3}\sqrt{18x+27}=15\left(x\ge-\dfrac{3}{2}\right)\)

\(\Rightarrow4\sqrt{2x+3}-\sqrt{4\left(2x+3\right)}+\dfrac{1}{3}\sqrt{9\left(2x+3\right)}=15\)

\(\Rightarrow4\sqrt{2x+3}-2\sqrt{2x+3}+\sqrt{2x+3}=15\)

\(\Rightarrow3\sqrt{2x+3}=15\Rightarrow\sqrt{2x+3}=5\Rightarrow2x+3=25\Rightarrow x=11\)

c) \(\sqrt{x^2-6x+9}=2x+1\)

Vì \(VT\ge0\Rightarrow VP\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

\(\Rightarrow\sqrt{\left(x-3\right)^2}=2x+1\Rightarrow\left|x-3\right|=2x+1\Rightarrow\left[{}\begin{matrix}x-3=2x+1\\x-3=-2x-1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-4\left(l\right)\\x=\dfrac{2}{3}\end{matrix}\right.\)

d) \(\sqrt{x+3+4\sqrt{x-1}}-\sqrt{x+8+6\sqrt{x-1}}=9\left(x\ge1\right)\)

\(\Rightarrow\sqrt{x-1+4\sqrt{x-1}+4}-\sqrt{x-1+6\sqrt{x-1}+9}=9\)

\(\Rightarrow\sqrt{\left(\sqrt{x-1}+2\right)^2}-\sqrt{\left(\sqrt{x-1}+3\right)^2}=9\)

\(\Rightarrow\left|\sqrt{x-1}+2\right|-\left|\sqrt{x-1}+3\right|=9\)

\(\Rightarrow\sqrt{x-1}+2-\sqrt{x-1}-3=9\Rightarrow-1=9\) (vô lý)

 

Bình luận (0)
TN
Xem chi tiết
TT
Xem chi tiết
DH
11 tháng 5 2023 lúc 19:11

Ko cần biet vi ko biet ang ang

 

Bình luận (0)
NH
11 tháng 5 2023 lúc 19:13

\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{2}{5}\) + \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{7}{5}\) - \(\dfrac{1}{2022}\) \(\times\) \(\dfrac{8}{10}\)

\(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{2}{5}\) + \(\dfrac{7}{5}\) - \(\dfrac{8}{10}\))

\(\dfrac{1}{2022}\) \(\times\) ( \(\dfrac{9}{5}\) - \(\dfrac{4}{5}\))

\(\dfrac{1}{2022}\) \(\times\) \(\dfrac{5}{5}\)

=  \(\dfrac{1}{2022}\times1\)

\(\dfrac{1}{2022}\)

Bình luận (0)
DV
Xem chi tiết
NM
7 tháng 12 2021 lúc 9:00

\(Sửa:A=x^4-6x^3+13x^2-12x+2021\\ A=\left(x^4-6x^3+9x^2\right)+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x\right)^2+4\left(x^2-3x\right)+4+2017\\ A=\left(x^2-3x+2\right)^2+2017\ge2017\\ A_{min}=2017\Leftrightarrow x^2-3x+2=0\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Bình luận (0)