Cho a , b , c > 0 , CMR :
\(a+b+c\)> \(\sqrt{a.b}\)+\(\sqrt{b.c}\)+\(\sqrt{c.a}\)
Cho a,b,c \(\in\) Q thỏa mãn a.b+b.c+c.a =1
CM:\(\sqrt{\left(a^2+1\right).\left(b^2+1\right).\left(c^2+1\right)}\in Q\)
thay trực tiếp giả thiết ta có
\(\sqrt{\left(a^2+1\right)}=\sqrt{a^2+ab+bc+ac}=\sqrt{a\left(a+b\right)+c\left(a+b\right)}=\sqrt{\left(a+c\right)\left(a+b\right)}\)
tương tự ta có
\(\sqrt{b^2+1}=\sqrt{\left(b+a\right)\left(b+c\right)}\)
\(\sqrt{c^2+1}=\sqrt{\left(c+a\right)\left(c+b\right)}\)
nên
\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(\left(a+b\right)\left(a+c\right)\left(b+c\right)\right)^2}=\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\)
mà \(a,b,c\in Q\) nên \(\left|\left(a+b\right)\left(a+c\right)\left(b+c\right)\right|\in Q\Rightarrowđpcm\)
Cho a, b, c khác 0 thỏa mãn a.b / a+b = b.c/b+c=c.a/c+a.
Tính giá trị của biểu thức M=a.b+b.c+c.a/a2+b2+c2
cho a,b,c khác 0.
\(và\frac{a.b}{a+b}=\frac{c.a}{c+a}=\frac{b.c}{b+c}\)
cmr a=b=c
\(\frac{ab}{a+b}=\frac{ac}{a+c}=\frac{bc}{b+c}\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{b\left(a+c\right)}=\frac{abc}{a\left(b+c\right)}\)
\(\Rightarrow c\left(a+b\right)=b\left(a+c\right)\Leftrightarrow ac+bc=ab+bc\Rightarrow ac=ab\Rightarrow c=b\) (1)
\(\Rightarrow b\left(a+c\right)=a\left(b+c\right)\Leftrightarrow ab+bc=ab+ac\Rightarrow bc=ac\Rightarrow b=a\) (2)
\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)\Leftrightarrow ac+bc=ab+ac\Rightarrow bc=ab\Rightarrow c=a\) (3)
Từ (1) ; (2) ; (3) => \(a=b=c\) (ĐPCM)
Cho 3 số thực dương a,b.c thỏa mãn abc=1 cmr:\(\dfrac{b+c}{\sqrt{a}}+\dfrac{c+a}{\sqrt{b}}+\dfrac{a+b}{\sqrt{c}}\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
Cho a^2+b^2+c^2=a.b+b.c+c.a
CMR: a=b=c
gt <=> \(a^2+b^2+c^2-ab-bc-ca=0\)
<=> \(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
<=> \(\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
<=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\) (1)
TA LUÔN CÓ: \(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\ge0\forall a;b;c\)
=> \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\) (2)
TỪ (1) VÀ (2) => DẤU "=" SẼ XẢY RA <=> \(\left(a-b\right)^2=\left(b-c\right)^2=\left(c-a\right)^2=0\)
<=> \(a=b=c\)
VẬY TA CÓ ĐPCM.
a2 + b2 + c2 = ab + bc + ca
<=> 2( a2 + b2 + c2 ) = 2( ab + bc + ca )
<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0
<=> ( a2 - 2ab + b2 ) + ( b2 - 2bc + c2 ) + ( c2 - 2ca + a2 ) = 0
<=> ( a - b )2 + ( b - c )2 + ( c - a )2 = 0 (*)
Ta có : \(\hept{\begin{cases}\left(a-b\right)^2\\\left(b-c\right)^2\\\left(c-a\right)^2\end{cases}}\ge0\forall a,b,c\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)
Đẳng thức xảy ra ( tức là (*) xảy ra ) <=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}}\Rightarrow a=b=c\)
=> ĐPCM
cho \(\left(a+b+c\right)^2=3.\left(a.b+b.c+c.a\right)\) CMR a=b=c
\(3.\left(ab+bc+ca\right)=\left(a+b+c\right)^2\)
\(=>3ab+3bc+3ca=a^2+b^2+c^2+2ab+2bc+2ca\)
\(=>3ab+3bc+3ca-a^2-b^2-c^2-2ab-2bc-2ca=0\)
\(=>-a^2-b^2-c^2+ab+bc+ca=0=>-\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)
\(=>a^2+b^2+c^2-2ab-2bc-2ca=0=>2\left(a^2+b^2+c^2-2ab-2bc-2ca\right)=0\)
\(=>2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)
\(=>\left(a^2-2ab+b^2\right)+\left(b^2-2bc+c^2\right)+\left(c^2-2ca+a^2\right)=0\)
\(=>\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)
Tổng 3 số không âm =0 <=> chúng = 0
<=> \(\hept{\begin{cases}a-b=0\\b-c=0\\c-a=0\end{cases}< =>a=b=c\left(đpcm\right)}\)
Cho a,b,c theo a2+b2+c2 khác 0
a.b/a+b = b.c/b+c = c.a/c+a
Tính: P = a.b2+b.c2+c.a2/a3+b3+c3
Cho a+b+c=0. CMR:
a^4+b^4+c^4 = mỗi biểu thức dưới đây:
a, 2.(a.b+b.c+c.a)^2
c, (a^2 + b^2 + c^2)/2
Giải bài đầy đủ dùm e ạ
bài này trong sách nâng cao và phát triển à
Vì là trong sách nên có lẽ đã lm đc câu a nên ta sẽ áp dụng:
b) 2.( ab+bc+ca) = 2( a^2.b^2+ b^2.c^2+c^2.a^2+ 2.b^2.a.c + 2a^2.b.c+ 2c^2.a.b)
= 2. [ a^2.b^2+b^2.c^2+c^2.a^2+ 2abc ( a+b+c)]
= 2. (a^2.b^2 + b^2.c^2 + c^2.a^2 ) ( Vì a+b+c = 0)
= a^4 + b^4 + c^4 ( theo câu a nha)
Cho các số a,b,c\(\ne\)0 thoả mãn: \(\frac{a.b}{a+b}\)=\(\frac{b.c}{b+c}\)= \(\frac{c.a}{c+a}\)
Tính Q=\(\frac{a.b^2+b.c^2+c.a^2}{a^3+b^3+c^3}\)
Ta có :
\(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}=\frac{ab-bc}{\left(a+b\right)-\left(b+c\right)}=\frac{bc-ca}{\left(b+c\right)-\left(c+a\right)}=\frac{ab-ca}{\left(a+b\right)-\left(c+a\right)}\)
\(\Rightarrow a=b=c\)
\(\Rightarrow Q=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=1\)