cho 2 số thực a,b thỏa mãn \(a^3+b^3=1\). Tính giá trị lớn nhất của \(A=\sqrt{a}+\sqrt{b}\)
1.Cho 3 số thực dương a,b,c Tìm giá trị nhỏ nhất của
\(\dfrac{1}{\sqrt{ab}+2\sqrt{bc}+2\left(a+c\right)}-\dfrac{2}{5\sqrt{a+b+c}}\)
2.Cho 3 sô thực dương thỏa mãn 6a+3b+2a=abc
Tìm giá trị lớn nhất của Q = \(\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Tìm giá trị lớn nhất của biểu thức
\(P=\sqrt[3]{a+b}+\sqrt[3]{b+c}+\sqrt[3]{c+a}\)
Chắc áp dụng được Cauchy-Schwarz
Ta có: \(\sqrt[3]{\left(a+b\right).\frac{2}{3}.\frac{2}{3}}\le\frac{a+b+\frac{4}{3}}{3}=\frac{a+b}{3}+\frac{4}{9}\)
Tương tự rồi cộng các vế của BĐT lại, ta được: \(\sqrt[3]{\frac{4}{9}}P\le\frac{2\left(a+b+c\right)}{3}+\frac{4}{3}=2\Rightarrow P\le\sqrt[3]{18}\)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
lỡ k Kiệt Nguyễn r, bài Kiệt Nguyên sai r
Với các số thực không âm a,b,c thỏa mãn \(a^2+b^2+c^2=1\), tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(Q=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(Q\le\sqrt{3\left(a+b+b+c+c+a\right)}=\sqrt{6\left(a+b+c\right)}\le\sqrt{6.\sqrt{3\left(a^2+b^2+c^2\right)}}=\sqrt{6\sqrt{3}}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{\sqrt{3}}\)
Lại có:
\(a^2+b^2+c^2\le1\Rightarrow0\le a;b;c\le1\)
\(\Leftrightarrow a\left(a-1\right)+b\left(b-1\right)+c\left(c-1\right)\le0\)
\(\Leftrightarrow a+b+c\ge a^2+b^2+c^2=1\)
Do đó:
\(Q^2=2\left(a+b+c\right)+2\sqrt{a^2+ab+bc+ca}+2\sqrt{b^2+ab+bc+ca}+2\sqrt{c^2+ab+bc+ca}\)
\(Q^2\ge2\left(a+b+c\right)+2\sqrt{a^2}+2\sqrt{b^2}+2\sqrt{c^2}\)
\(Q^2\ge4\left(a+b+c\right)\ge4\)
\(\Rightarrow Q\ge2\)
Dấu "=" xảy ra khi \(\left(a;b;c\right)=\left(0;0;1\right)\) và hoán vị
Cho a,b,c là các số thực dương thỏa mãn \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\). Tìm giá trị lớn nhất nhất của biểu thức: \(P=\dfrac{1}{\sqrt{a^2-ab+b^2}}+\dfrac{1}{\sqrt{b^2-bc+c^2}}+\dfrac{1}{\sqrt{c^2}-ac+a^2}\)
cái cuối là \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\) nha
\(a^2+b^2-ab\ge\dfrac{1}{2}\left(a+b\right)^2-\dfrac{1}{4}\left(a+b\right)^2=\dfrac{1}{4}\left(a+b\right)^2\)
\(\Rightarrow\dfrac{1}{\sqrt{a^2-ab+b^2}}\le\dfrac{1}{\sqrt{\dfrac{1}{4}\left(a+b\right)^2}}=\dfrac{2}{a+b}\le\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{b^2-bc+c^2}}\le\dfrac{1}{2}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)\) ; \(\dfrac{1}{\sqrt{c^2-ca+a^2}}\le\dfrac{1}{2}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
Cộng vế:
\(P\le\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)
Dấu "=" xảy ra khi \(a=b=c=1\)
Cho a,b,c là 3 số thực dương thỏa mãn a+b+c=1.Tìm giá trị lớn nhất của biểu thức P=\(\sqrt{\dfrac{ab}{c+ab}}+\sqrt{\dfrac{bc}{a+bc}}+\sqrt{\dfrac{ca}{b+ca}}\)
\(\sqrt{\dfrac{ab}{c+ab}}=\sqrt{\dfrac{ab}{c\left(a+b+c\right)+ab}}=\sqrt{\dfrac{ab}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{b}{b+c}\right)\)
Tương tự: \(\sqrt{\dfrac{bc}{a+bc}}\le\dfrac{1}{2}\left(\dfrac{b}{a+b}+\dfrac{c}{a+c}\right)\) ; \(\sqrt{\dfrac{ca}{b+ca}}\le\dfrac{1}{2}\left(\dfrac{a}{a+b}+\dfrac{c}{b+c}\right)\)
Cộng vế với vế:
\(P\le\dfrac{1}{2}\left(\dfrac{a}{a+c}+\dfrac{c}{a+c}+\dfrac{b}{b+c}+\dfrac{c}{b+c}+\dfrac{b}{a+b}+\dfrac{a}{a+b}\right)=\dfrac{3}{2}\)
Dấu "=" xảy ra khi \(a=b=c=\dfrac{1}{3}\)
Cho các số thực không âm a,b,c thỏa mãn a + b + c =2021 .Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
Áp dụng BĐT Bunhiacopxki ta có:
\(\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=3\left(2a+2b+2c\right)=3.2\left(a+b+c\right)=6.2021=12126\)
\(\Rightarrow\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\le\sqrt{12126}\)
Dấu ''='' xảy ra khi \(a=b=c=\dfrac{2021}{3}\)
Cho ba số thực dương a; b và c thỏa mãn :\(a+b+c=3\). Tìm giá trị lớn nhất của biểu thức sau:
\(P=\sqrt{9a+16b}+\sqrt{9b+16c}+\sqrt{9c+16a}\)
\(P\le\sqrt{3\left(9a+16b+9b+16c+9c+16a\right)}=\sqrt{75\left(a+b+c\right)}=15\)
\(P_{max}=15\) khi \(a=b=c=1\)
Với a,b,c là các số thực dương thỏa mãn đẳng thức \(6a+3b+2c=abc\)
➢Tìm giá trị lớn nhất của \(Q=\dfrac{1}{\sqrt{a^2+1}}+\dfrac{2}{\sqrt{b^2+4}}+\dfrac{3}{\sqrt{c^2+9}}\)
\(6a+3b+2c=abc\Leftrightarrow\dfrac{2}{ab}+\dfrac{3}{ac}+\dfrac{6}{bc}=1\)
Đặt \(\left(\dfrac{1}{a};\dfrac{2}{b};\dfrac{3}{c}\right)=\left(x;y;z\right)\Rightarrow xy+yz+zx=1\)
\(Q=\dfrac{1}{\sqrt{\dfrac{1}{x^2}+1}}+\dfrac{2}{\sqrt{\dfrac{4}{y^2}+4}}+\dfrac{3}{\sqrt{\dfrac{9}{z^2}+9}}=\dfrac{x}{\sqrt{x^2+1}}+\dfrac{y}{\sqrt{y^2+1}}+\dfrac{z}{\sqrt{z^2+1}}\)
\(Q=\dfrac{x}{\sqrt{x^2+xy+yz+zx}}+\dfrac{y}{\sqrt{y^2+xy+yz+zx}}+\dfrac{z}{\sqrt{z^2+xy+yz+zx}}\)
\(Q=\dfrac{x}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{y}{\sqrt{\left(x+y\right)\left(y+z\right)}}+\dfrac{z}{\sqrt{\left(x+z\right)\left(y+z\right)}}\)
\(Q\le\dfrac{1}{2}\left(\dfrac{x}{x+y}+\dfrac{x}{x+z}+\dfrac{y}{x+y}+\dfrac{y}{y+z}+\dfrac{z}{x+z}+\dfrac{z}{y+z}\right)=\dfrac{3}{2}\)
\(Q_{max}=\dfrac{3}{2}\) khi \(x=y=z=\dfrac{1}{\sqrt{3}}\) hay \(\left(a;b;c\right)=\left(\sqrt{3};2\sqrt{3};3\sqrt{3}\right)\)
Cho a, b, c là các số thực không âm thỏa mãn a+b+c=3. Tìm giá trị lớn nhất của biểu thức \(K = \sqrt{12a+(b-c)^2} + \sqrt{12b+(a-c)^2} + \sqrt{12c+(a-b)^2}\)
https://h.vn/hoi-dap/question/702421.html
https://h.vn/hoi-dap/question/702421.html
https://h.vn/hoi-dap/question/702421.html
xin lỗi mk nhầm bài
Ta có:
\(\sqrt{12a+\left(b-c\right)^2}=\sqrt{4a\left(a+b+c\right)+\left(b-c\right)^2}\)
\(=\sqrt{4a^2+4ab+4ac+b^2-2bc+c^2}\)
\(=\sqrt{\left(2a+b+c\right)^2-4bc}\)
\(\le\sqrt{\left(2a+b+c\right)^2}=2a+b+c\)
Khi đó \(K\le4\left(a+b+c\right)=12\)
Dấu "=" xảy ra tại \(a=0;b=0;c=3\) và các hoán vị.