Những câu hỏi liên quan
DA
Xem chi tiết
NL
21 tháng 6 2017 lúc 15:27

A B C D H K

Bình luận (0)
DL
Xem chi tiết
YT
27 tháng 12 2017 lúc 11:22

TỨ GIÁC ABHK LÀ HCN DẤU HIỆU 1

B)

TAM GIÁC AHD= TAM GIÁC BCK (CH-CGV)VÌ

GÓC H = GÓC K ( CÙNG BẰNG 90 ĐỘ)

AH=AK(ABHK LÀ HCN)

AD=BC(ABCD LÀ HÌNH THANG CÂN)

SUY RA DH=KC ( HAI CẠNH TƯƠNG ỨNG)

Bình luận (0)
TB
Xem chi tiết
AH
7 tháng 9 2021 lúc 20:07

Lời giải:
Xét tam giác $ADH$ và $BCK$ có:

$\widehat{AHD}=\widehat{BKC}=90^0$

$\widehat{ADH}=\widehat{BCK}$ (do $ABCD$ là htc)

$AD=BC$ (do $ABCD$ là htc)

$\Rightarrow \triangle ADH=\triangle BCK$ (ch-gn)

$\Rightarrow DH=CK$ 

Áp dụng định lý Pitago cho tam giác $ADH$ vuông:

$AH=\sqrt{AD^2-DH^2}=\sqrt{10^2-6^2}=8$ (cm)

Từ tam giác bằng nhau ở trên suy ra $BK=AH=8$ (cm)

Bình luận (0)
AH
7 tháng 9 2021 lúc 20:12

Hình vẽ:

Bình luận (0)
PB
Xem chi tiết
CT
4 tháng 1 2020 lúc 14:47

a) Chứng minh

DADH = DBCK (ch-gnh)

Þ DH = CK

Vận dụng nhận xét hình thang ABKH (AB//KH) có AH//BK Þ AB = HK

b) Vậy D H = C D − A B 2  

c) DH = 4cm, AH = 3cm; SABCD = 30cm2

Bình luận (0)
NH
Xem chi tiết
NT
19 tháng 8 2021 lúc 0:14

Bài 8:

a: Xét ΔDBC có 

E là trung điểm của BD

M là trung điểm của BC

Do đó: EM là đường trung bình của ΔDBC

Suy ra: EM//DC

b: Xét ΔAEM có

D là trung điểm của AE

DI//EM

Do đó: I là trung điểm của AM

Bình luận (1)
NT
19 tháng 8 2021 lúc 0:16

Bài 5: 

Xét ΔABC có 

\(\dfrac{AE}{EB}=\dfrac{AD}{DC}\left(=1\right)\)

Do đó: DE//BC

Xét tứ giác BEDC có DE//BC

nên BEDC là hình thang

mà \(\widehat{EBC}=\widehat{DCB}\)

nên BEDC là hình thang cân

Bình luận (0)
VC
Xem chi tiết
VC
Xem chi tiết
PB
Xem chi tiết
CT
5 tháng 6 2017 lúc 4:27

Bài tập: Hình thang cân | Lý thuyết và Bài tập Toán 8 có đáp án

Áp dụng định nghĩa, tính chất và giả thiết của hình thang cân ta có:

Bài tập: Hình thang cân | Lý thuyết và Bài tập Toán 8 có đáp án 

⇒ Δ ADH = Δ BCK

(trường hợp cạnh huyền – góc nhọn)

⇒ DH = CK (cặp cạnh tương ứng bằng nhau)

Vậy DH = CK. (đpcm)

Bình luận (0)
NN
Xem chi tiết