tim x:(5x-7-9x):(-2-3x+7)=5-2(x-2)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
tim x
(5x-7-9x):(-2-3x+7)=5-2(x-2)
Bài 2: Tìm x, biết:
a/ 12x(x – 5) – 3x(4x - 10) = 120
b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)
c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)
$ a/ 12x(x – 5) – 3x(4x - 10) = 120$
`<=>12x^2-60x-12x^2+30x=120`
`<=>-30x=120`
`<=>x=-4`
Vậy `x=-4`
$b/ 9x(x + 4) – 5x(3x + 2) = 112 - 2x(3x + 1)$
`<=>9x^2+36x-15x^2-10x=112-6x^2-2x`
`<=>-6x^2+26x=112-6x^2-2x`
`<=>28x=112`
`<=>x=4`
Vậy `x=4`
$c/ 3x(1 – x) - 5x(3x + 7) = 154 + 9x(5 – 2x)$
`<=>3x-3x^2-15x^2-35x=154+45x-18x^2`
`<=>-32x-18x^2=154+45x-18x^2`
`<=>77x=-154`
`<=>x=-2`
Vậy `x=-2`
Tim gtnn, gtln neu co:
A= 3x^2 +9x+17/3x^2 + 9x+7
B= 2x^2-16x+41/x^2-8x+22
C= -16/5x^2 + 20x + 26
D= 1/3x^2 - 9x +15
\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)
Câu khác giải TT
1. Rút Gọn
a) -5x (x-3).(2x+4)-(x+3)(x-3)+(5x-2)(3x+4)
b) (4x-1)x(3x+1)-5x^2x(x-3)-(x-4)x(x-5)-7(x^3-2x^2+x-1)
c) (5x-7)(x-9)-(3-x)(2-5x)-2x(x-4)
d)(5x-4)(x+5)-(x+1)(x^2-6)-5x+19
e)(9x^2-5)(x-3)-3x^2(3x+9)-(x-5)(x+4)-9x^3
g) (x-1)^2 - (x+2)^2
Thanks mn nhiều ạ
\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)
\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)
\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)
\(=-10x^3+19x^2+74x+1\)
\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)
\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)
\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)
\(=-5x^4-11x^3+24x^2+12x+7\)
\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)
\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)
\(=-2x^2-27x+57\)
\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)
\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)
\(=-x^3+4x^2+22x+5\)
\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)
\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)
\(=-9x^3-55x^2+4x+35\)
\(g,\left(x-1\right)^2-\left(x+2\right)^2\)
\(=x^2-2x+1-x^2-4x-4\)
\(=-6x-3\)
Tim x
6x^2-(2x+5)(3x-2)=7
(3x-5)*(7-5x)-(5x+2)(2-3x)=4
6x^2-(2x+5)(3x-2)=7
6x^2 - (6x^2 + 15x -4x -10) =7
-11x = -3
x= 3/11
(3x-5)*(7-5x)-(5x+2)(2-3x)=4
21x - 35 - 15x^2 + 25x - (10x +4 - 15x^2 - 6x) =4
46x - 10x +6x = 4 + 35 +4
42x = 43
x= 42/42
1:tim x
a,x(x-5)-4x+20=0
b,x(x+6)-7x-42=0
c,x3-5x2+x-7=0
d,x2-9x+8=0
g,3x2-5x+2=0
a) \(x\left(x-5\right)-4x+20=0\)
\(\Leftrightarrow x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-4=0\\x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=4\\x=5\end{array}\right.\)
b) \(x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\left(x+6\right)\left(x-7\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+6=0\\x-7=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-6\\x=7\end{array}\right.\)
d) \(x^2-9x+8=0\)
\(\Leftrightarrow x^2-x-8x+8=0\)
\(\Leftrightarrow x\left(x-1\right)-8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-8\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\x-8=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=8\end{array}\right.\)
g) \(3x^2-5x+2=0\)
\(\Leftrightarrow3x^2-3x-2x+2=0\)
\(\Leftrightarrow3x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(3x-2\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x-1=0\\3x-2=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=\frac{2}{3}\end{array}\right.\)
d) (3x – 5)(7 – 5x) – (5x + 2)(2 – 3x) = 4 g) 3(2x - 1)(3x - 1) - (2x - 3)(9x - 1) =0 j) (2x – 1)(3x + 1) – (4 – 3x)(3 – 2x) = 3 k) (2x + 1)(x + 3) – (x – 5)(7 + 2x) = 8 m) 2(3x – 1)(2x + 5) – 6(2x – 1)(x + 2) = - 6
g: Ta có: \(3\left(2x-1\right)\left(3x-1\right)-\left(2x-3\right)\left(9x-1\right)=0\)
\(\Leftrightarrow3\left(6x^2-5x+1\right)-\left(18x^2-29x+3\right)=0\)
\(\Leftrightarrow18x^2-15x+3-18x^2+29x-3=0\)
\(\Leftrightarrow14x=0\)
hay x=0
tính nghiệm x) 1 mũ 2 -9x+8 2)3x mũ 2 -7x+4 3)2x mũ 2+5x-7 4) 3x mũ 2-9x+6 5)x mũ 2 +2x-3
1: x^2-9x+8=0
=>(x-1)(x-8)=0
=>x=1 hoặc x=8
2: 3x^2-7x+4=0
=>3x^2-3x-4x+4=0
=>(x-1)(3x-4)=0
=>x=4/3 hoặc x=1
3: 2x^2+5x-7=0
=>(2x+7)(x-1)=0
=>x=1 hoặc x=-7/2
4: 3x^2-9x+6=0
=>x^2-3x+2=0
=>x=1 hoặc x=2
5: x^2+2x-3=0
=>(x+3)(x-1)=0
=>x=-3 hoặc x=1
`@` `\text {Answer}`
`\downarrow`
`1)`
\(x^2 - 9x + 8?\)
\(x^2-9x+8=0\)
`<=>`\(x^2-8x-x+8=0\)
`<=> (x^2 - 8x) - (x - 8) = 0`
`<=> x(x - 8) - (x-8) = 0`
`<=> (x-1)(x-8) = 0`
`<=>`\(\left[{}\begin{matrix}x-1=0\\x-8=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=1\\x=8\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 8}`
`2)`
\(3x^2 - 7x + 4 =0\)
`<=> 3x^2 - 3x - 4x + 4 = 0`
`<=> (3x^2 - 3x) - (4x - 4) = 0`
`<=> 3x(x - 1) - 4(x - 1) = 0`
`<=> (3x - 4)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-4=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=4\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=\dfrac{4}{3}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {4/3; 1}`
`3)`
\(2x^2 + 5x - 7=0\)
`<=> 2x^2 - 2x + 7x - 7 = 0`
`<=> (2x^2 - 2x) + (7x - 7) = 0`
`<=> 2x(x - 1) + 7(x - 1) = 0`
`<=> (2x+7)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}2x+7=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}2x=-7\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-\dfrac{7}{2}\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {-7/2; 1}.`
`4)`
\(3x^2 - 9x + 6 = 0\)
`<=> 3x^2 - 3x - 6x + 6 = 0`
`<=> (3x^2 - 3x) - (6x - 6) = 0`
`<=> 3x(x - 1) - 6(x - 1) = 0`
`<=> (3x - 6)(x - 1) = 0`
`<=>`\(\left[{}\begin{matrix}3x-6=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}3x=6\\x=1\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=2\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; 2}.`
`5)`
\(x^2 + 2x - 3=0\)
`<=> x^2 + 3x - x - 3 = 0`
`<=> (x^2 - x) + (3x - 3) = 0`
`<=> x(x - 1) + 3(x - 1) = 0`
`<=> (x+3)(x-1) = 0`
`<=>`\(\left[{}\begin{matrix}x+3=0\\x-1=0\end{matrix}\right.\)
`<=>`\(\left[{}\begin{matrix}x=-3\\x=1\end{matrix}\right.\)
Vậy, nghiệm của đa thức là `S = {1; -3}.`
Tìm x, biết:
a)2x*(6x-5)-4x*(3x+7)=7
b)-5x(2x+1)+3x(3x+2)+x(x-1/2)=0
c)3x*(6x-5)-2x(9x+7)=15
d)1/2x*(2x+4)-(x+3)=5
e)(-3x+2)*5x-5x*(2x+1)-5x=4
Mấy bạn giúp mk ik mk đang cần gấp!
a: \(\Leftrightarrow12x^2-10x-12x^2-28x=7\)
=>-38x=7
hay x=-7/38
b: \(\Leftrightarrow-10x^2-5x+9x^2+6x+x^2-\dfrac{1}{2}x=0\)
=>1/2x=0
hay x=0
c: \(\Leftrightarrow18x^2-15x-18x^2-14x=15\)
=>-29x=15
hay x=-15/29
d: \(\Leftrightarrow x^2+2x-x-3=5\)
\(\Leftrightarrow x^2+x-8=0\)
\(\text{Δ}=1^2-4\cdot1\cdot\left(-8\right)=33>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{33}}{2}\\x_2=\dfrac{-1+\sqrt{33}}{2}\end{matrix}\right.\)
e: \(\Leftrightarrow-15x^2+10x-10x^2-5x-5x=4\)
\(\Leftrightarrow-25x^2=4\)
\(\Leftrightarrow x^2=-\dfrac{4}{25}\left(loại\right)\)