Tam giác ABC có A (-6; -3), B (-4; 3); C (9; 2). Viết phg trình đg phân giác trong góc A
Câu 1:
1) Cho tam giác ABC có góc A = góc C-10độ; góc B=góc C + 10độ. Tính các góc của tam giác ABC?
2) Cho tam giác ABC có góc B= 7/6 góc C; góc A= 5/6 góc C. Tính các góc của tam giác ABC?
3) cho tam giác ABC có góc A= 2. Góc B ; góc B = góc C . tính các góc của tam giác ABC?
4) Cho tam giác ABC có góc A= 5.góc C; góc B= 2.góc C. tínhcác góc của tam giác ABC?
Mình cần gấp ạ....
1)Cho tam giác ABC cân tại A có AB=6 cm,BC=4 cm.Tính các góc trong tam giác ABC.
2)Cho tam giác ABC vuông tại A có góc B=50 độ,BC=5 cm.Ở phía ngoài tam giác ABC,vẽ tam giác vuông ADC có góc CAD=35 độ.Tính chu vi tam giác ABC và chu vi tam giác ADC
Cho tam giác ABC có A=90°, a, √6/3, b, c theo thứ tự lập thành cấp số nhân. Tam giác ABC là tam giác có đặc điểm gì
Cho tam giác ABC có a = 6 cm, b = 7 cm, c = 10 cm. Tam giác ABC là
A. Tam giác nhọn
B. Tam giác tù
C. Tam giác vuông
D. Tam giác đều
Ta có: cosC = a 2 + b 2 − c 2 2 a b = 6 2 + 7 2 − 10 2 2.6.7 < 0
⇒ C ^ > 90 0
Suy ra, tam giác ABC là tam giác tù.
Chọn B
Cho tam giác ABC có a = 5, b = 6, c = 7. Diện tích của tam giác ABC bằng
A. 12 6
B. 3 6
C. 6 6
D. 9 6
Nửa chu vi của tam giác ABC là: p = 5 + 6 + 7 2 = 9
Áp dụng công thức Hê- rông, diện tích tam giác ABC là:
S = 9. 9 − 5 . 9 − 6 . 9 − 7 = 36.6 = 6 6 .
Chọn C.
Cho tam giác ABC có AB = 5, AC = 6, A =30°. Diện tích của tam giác ABC bằng
A.15/2
B.15
C. 30
D. 5
Diện tích tam giác ABC là:
S = 1 2 A B . A C . sin A = 1 2 .5.6. sin 30 ° = 15 2
Chọn A
Cho tam giác ABC có AB = 4, AC = 6, A =30°. Diện tích của tam giác ABC là
A.12
B. 6
C. 6 3
D. 6 2
Diện tích tam giác ABC là:
S = 1 2 A B . A C . sin A = 1 2 .4.6. sin 30 0 = 6
ĐÁP ÁN B
Cho hình tam giác ABC.Từ ba đỉnh A,B,C của tam giác ABC hãy vẽ ba đoạn thẳng để phân chia tam giác ABC thành 6 tam giác nhỏ có diện tích bằng nhau.Nêu rõ cách vẽ và giải thích vì sao 6 tam giác đó có diện tích bằng nhau?
ultr quản lí luôn hả?
B. Phần tự luận (6 điểm)
Cho tam giác ABC có A B = 3 c m , A C = 4 c m , B C = 5 c m
a. Tam giác ABC là tam giác gì? Vì sao
a. Ta có:
AB2 + AC2 = 32 + 42 = 25 = 52 = BC2
Tam giác ABC vuông tại A (theo định lí Pytago đảo) (2 điểm)
Cho tam giác ABC có \(AB = 6,AC = 8\) và \(\widehat A = {60^o}.\)
a) Tính diện tích tam giác ABC.
b) Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Tính diện tích tam giác IBC.
Tham khảo:
Đặt \(a = BC,b = AC,c = AB.\)
a) Áp dụng công thức \(S = \frac{1}{2}bc\sin A\), ta có: \({S_{ABC}} = \frac{1}{2}.8.6.\sin {60^o} = \frac{1}{2}.8.6.\frac{{\sqrt 3 }}{2} = 12\sqrt 3 \)
b) Áp dụng định lí cosin cho tam giác ABC ta được:
\(\begin{array}{l}B{C^2} = {a^2} = {8^2} + {6^2} - 2.8.6.\cos {60^o} = 52\\ \Rightarrow BC = 2\sqrt {13} \end{array}\)
Xét tam giác IBC ta có:
Góc \(\widehat {BIC} = 2.\widehat {BAC} = {120^o}\)(góc ở tâm và góc nội tiếp cùng chắn một cung)
\(IB = IC = R = \frac{a}{{2\sin A}} = \frac{{2\sqrt {13} }}{{2.\frac{{\sqrt 3 }}{2}}} = \frac{{2\sqrt {39} }}{3}.\)
\( \Rightarrow {S_{IBC}} = \frac{1}{2}.\frac{{2\sqrt {39} }}{3}.\frac{{2\sqrt {39} }}{3}\sin {120^o} = \frac{{13\sqrt 3 }}{3}.\)