Những câu hỏi liên quan
NA
Xem chi tiết
PD
Xem chi tiết
LH
18 tháng 8 2016 lúc 15:52

* a/b < c/d => ad < cb
=>ad +ab < bc+ab
=> a(d+b) < b(a+c)
=> a/b < a+c/d+b (1)
* a/b < c/d => ad<cb
=> ad + cd < cb +cd
=> d(a+c) < c(b+d) 
=> c/d > a+c/b+d (2)
Từ (1) và (2) => a/b < a+c/b+d < c/d

Bình luận (0)
H24
Xem chi tiết
H24
23 tháng 8 2018 lúc 21:48

Ta có : \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)

\(\Rightarrow ab+ad< ab+bc\)

\(\Rightarrow a.\left(b+d\right)< b.\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\left(1\right)\)

Ta lại có : \(ad< bc\Rightarrow ad+cd< bc+cd\)

\(\Rightarrow d.\left(a+c\right)< c.\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra nếu :\(\frac{a}{b}< \frac{c}{d}\)

thì : \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

Bình luận (0)
DP
Xem chi tiết
NT
Xem chi tiết
TL
Xem chi tiết
CP
Xem chi tiết
SN
12 tháng 6 2015 lúc 8:23

\(\frac{a}{b}

Bình luận (0)
TT
Xem chi tiết
AC
31 tháng 8 2017 lúc 12:02

Ta có a/b < c/d => ad< bc     => ad + ab < bc + ab ( cộng hai vế với ab )

<=> a(b + d ) < b( a + c )

<=> a/b < a + c/ b+ d ( 1)

Mặt khác ad < bc => ad + cd < bc + cd ( cộng hai vế với cd )

<=> d(a + c ) < c( b + d ) <=> a + c/ b + d < c/d ( 2)

Từ (1) và (2) suy ra a/b < a + c / b + d < c/d 

Bình luận (0)
ND
Xem chi tiết
BH
21 tháng 6 2018 lúc 8:03

khó wá trời ơi

Bình luận (0)