Giúp mình với
câu 7: Tìm max
a)\(\sqrt{x-5}\)+\(\sqrt{23-x}\)
b)\(\sqrt{x-3}\)+\(\sqrt{19-x}\)
a) Tính giá trị của B
\(B=\sqrt{5-2\sqrt{3}}+\sqrt{7-4\sqrt{3}}+\sqrt{9-4\sqrt{5}}\)
b) Tìm MaxA= x+y+z biết x+3y=21 ; 2x+5z=51
Tìm GTNN
\(C=x+\sqrt{2-x}\)
\(A=\sqrt{3x-5}+\sqrt{7-3x}\)
\(D=x\sqrt{1-x^2}\)
\(B=\sqrt{x-5}+\sqrt{23-x}\)
Phiền các bạn giải giúp mình . Mình cần gấp , cảm ơn
so sánh
2\(\sqrt[3]{7}\)và 3\(\sqrt[3]{2}\)
tìm x
\(\sqrt[3]{x+1}=5\)
\(\sqrt[3]{1-3x^3}=-2\)
giúp mình với,mình cảm ơn
1) \(\sqrt[3]{x+1}=5\)
\(\Rightarrow x+1=125\)
\(\Rightarrow x=124\)
2) \(\sqrt[3]{1-3x^3}=-2\)
\(\Rightarrow1-3x^3=-8\)
\(\Rightarrow3x^3=9\)
\(\Rightarrow x=\sqrt[3]{3}\)
a)\(\sqrt{2x-5}\)+ 2\(\sqrt{7-x}\)=\(\sqrt{3}\).x2+\(\sqrt{3}.8x+19\sqrt{3}\)
b)\(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)
Mọi người giúp mình với
b) Đk: \(0\le x\le4\)
Ta có: \(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\)
<=> \(\left(\sqrt{4x+x^2}+\sqrt{4x-x^2}\right)^2=\left(4x+1\right)^2\)
<=> \(\left|4x+x^2\right|+\left|4x-x^2\right|+2\sqrt{\left(4x+x^2\right)\left(4x-x^2\right)}=16x^2+8x+1\)
<=> \(x^2+4x+4x-x^2+2x\sqrt{\left(4-x\right)\left(4+x\right)}=16x^2+8x+1\)
<=> \(2x\sqrt{16-x^2}=16x^2+8x+1-8x\)
<=> \(\left(2x\sqrt{16-x^2}\right)^2=\left(16x^2+1\right)^2\)
<=> \(4x^2\left|16-x^2\right|=256x^4+32x^2+1\)
<=> \(64x^2-4x^4=256x^4+32x^2+1\)
<=> \(260x^4-32x^2+1=0\)
Đặt x2 = k (k > 0) <=> 260k2 - 32k + 1 = 0
Ta có: \(\Delta=32^2-4.260=-16< 0\)
=> pt vô nghiệm
\(\sqrt{4x+x^2}+\sqrt{4x-x^2}=4x+1\) đk: \(0\le x\le4\)
\(\Leftrightarrow4x+x^2+4x-x^2+2\sqrt{16x^2-x^4}=16x^2+8x+1\)
\(2\sqrt{16x^2-x^4}=16x^2+1\)
\(\Leftrightarrow64x^2-4x^4=256x^4+32x^2+1\)
\(\Leftrightarrow260x^2-32x^2+1=0\)
=> Vo nghiem
Tìm x
d, \(\sqrt{x-2\sqrt{x-1}=\sqrt{x-1}-1}\)
e, \(\sqrt{1-12x+36x^2}=5\)
g, \(\sqrt{23+8\sqrt{7}}-\sqrt{7}=4\)
- Đề sai nhiều vậy sửa lại đi bạn ;-;
e) Ta có: \(\sqrt{1-12x+36x^2}=5\)
\(\Leftrightarrow\left|6x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}6x-1=5\\6x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}6x=6\\6x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{2}{3}\end{matrix}\right.\)
Vậy: \(S=\left\{1;-\dfrac{2}{3}\right\}\)
CÁC BẠN GIÚP MÌNH VỚI MÌNH ĐANG VỘI
câu 1 \(\frac{1}{\sqrt{2}-\sqrt{3}}\) . \(\sqrt{\frac{3\sqrt{2}-2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}}\)
câu 2 \(2.\sqrt{4+\sqrt{6-2\sqrt{5}}}.\sqrt{10}-\sqrt{2}\)
câu 3.
A=\(\frac{7}{\sqrt{x}+8},B=\frac{\sqrt{x}}{\sqrt{x}-3}+\frac{2\sqrt{x}-24}{x-9}\)
a, Tính A khi x = 25
b, Rút gọn B, tìm x để A,B nguyên
Ở onlinemath thì đông người thật nhưng không làm được bài khó
=> sang miny nhé bạn , bạn đặt câu hỏi rồi hỏi luôn emkhongnumberone ( thiên tài trong miny )
=> miny ít người nhưng rất hay onl và rất thông minh
thằng kia mày nghĩ sao trong onlime math k ai làm đươc bài khó
1)\(\sqrt{x+3}\) > 2
2) \(\dfrac{1+\sqrt{x}}{\sqrt{x}-2}\)<1
3) \(\left(\sqrt{x}-1\right)\).\(\left(\sqrt{x}-3\right)\)-5=\(\sqrt{x}\) \(\left(\sqrt{x}+2\right)-5\)
tìm x mn giúp mình nha plsss
1: ĐKXĐ: x+3>=0
=>x>=-3
\(\sqrt{x+3}>2\)
=>x+3>4
=>x>4-3=1
2: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}< 1\)
=>\(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-1< 0\)
=>\(\dfrac{\sqrt{x}+1-\sqrt{x}+2}{\sqrt{x}-2}< 0\)
=>\(\dfrac{3}{\sqrt{x}-2}< 0\)
=>\(\sqrt{x}-2< 0\)
=>\(\sqrt{x}< 2\)
=>0<=x<4
3: ĐKXĐ: x>=0
\(\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)-5=\sqrt{x}\left(\sqrt{x}+2\right)-5\)
=>\(x-4\sqrt{x}+3-5=x+2\sqrt{x}-5\)
=>\(x-4\sqrt{x}-2-x-2\sqrt{x}+5=0\)
=>\(-6\sqrt{x}+3=0\)
=>\(-6\sqrt{x}=-3\)
=>\(\sqrt{x}=\dfrac{1}{2}\)
=>x=1/4(nhận)
Cho C=\(\sqrt{x+7-6\sqrt{x-2}}+\sqrt{x+23-10\sqrt{x-2}}\)
a, Tìm tập xác định của C
b, Tìm GTNN của C, giá trị tương ứng của x
Mk lm đc đến đây rồi
C=\(\sqrt{\left(\sqrt{x-2}-5\right)^2}+\sqrt{\left(3-\sqrt{x-2}\right)^2}\)
=\(|\sqrt{x-2}-5|+|3-\sqrt{x-2}|\ge|\sqrt{x-2}-5+3-\sqrt{x-2}|=-2\)
mà mk thấy cũng có thể C=\(\sqrt{\left(5-\sqrt{x-2}\right)^2}+\sqrt{\left(\sqrt{x-2}-3\right)^2}\)
Thì khi đó GTNN của C lại bằng 2
Các bn giải thích hộ mk vs. Mình cảm ơn
Làm sai kìa !
Cái chỗ \(\left|\sqrt{x-2}-5+3-\sqrt{x-2}\right|\ge2\) chứ ? Trị tuyệt đối luôn dương mà
Cái trên là vừa phát hiện trong khi giải cái dưới
Vấn đề là giá trị của x cơ
Kiến thức cơ bản r
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(ab\ge0\)
\(C\ge2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\left(\sqrt{x-2}-5\right)\left(3-\sqrt{x-2}\right)\ge0\)
TH1: \(\hept{\begin{cases}\sqrt{x-2}-5\ge0\\3-\sqrt{x-2}\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}\ge5\\\sqrt{x-2}\le3\end{cases}}}\) ( loại )
TH2 : \(\hept{\begin{cases}\sqrt{x-2}-5\le0\\3-\sqrt{x-2}\le0\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{x-2}\le5\\\sqrt{x-2}\ge3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-2\le25\\x-2\ge9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\le27\\x\ge11\end{cases}\Leftrightarrow}11\le x\le27}\) ( nhận )
Vậy GTNN của \(C\) là \(2\) khi \(11\le x\le27\)
Giúp mình 1 bài thôi nha
\(B=\left(\frac{\sqrt{x}}{x-49}-\frac{\sqrt{x}-7}{x+7\sqrt{x}}\right):\frac{2\sqrt{x}-7}{x+7\sqrt{x}}+\frac{\sqrt{x}}{7-\sqrt{x}}\)
a) Tìm ĐKXĐ của B
b) Chứng minh với mọi x thì giá trị B không phụ thuộc vào biến
c) Tìm x để \(\frac{B}{\sqrt{x}-1}\)= \(2+\sqrt{3}\)
Vậy thoiiii :333333
\(đkxđ\Leftrightarrow\hept{\begin{cases}x\ge0\\x\ne49\end{cases}}\)
\(B=\left(\frac{\sqrt{x}}{x-49}-\frac{\sqrt{x}-7}{x+7\sqrt{x}}\right):\)\(\frac{2\sqrt{x}-7}{x+7\sqrt{x}}+\frac{\sqrt{x}}{7-\sqrt{x}}\)
\(=\left(\frac{\sqrt{x}}{\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}-\frac{\left(\sqrt{x}-7\right)^2}{\sqrt{x}\left(\sqrt{x}+7\right)\left(\sqrt{x}-7\right)}\right)\)\(:\frac{2\sqrt{x}-7}{\sqrt{x}\left(\sqrt{x}+7\right)}-\frac{\sqrt{x}}{\sqrt{x}-7}\)
\(\frac{x-x+14\sqrt{x}-49}{\sqrt{x}\left(\sqrt{x}-7\right)\left(\sqrt{x}+7\right)}:\frac{2\sqrt{x}-7}{\sqrt{x}\left(\sqrt{x}+7\right)}\)\(-\frac{\sqrt{x}}{\sqrt{x}-7}\)
\(=\frac{7\left(2\sqrt{x}-7\right)\sqrt{x}\left(\sqrt{x}+7\right)}{\sqrt{x}\left(\sqrt{x}+7\right)\left(\sqrt{x}-7\right)\left(2\sqrt{x}-7\right)}\)\(-\frac{\sqrt{x}}{\sqrt{x}-7}\)
\(=\frac{7}{\sqrt{x}-7}-\frac{\sqrt{x}}{\sqrt{x}-7}=\frac{7-\sqrt{x}}{\sqrt{x}-7}=-1\)