Những câu hỏi liên quan
NA
Xem chi tiết
LL
23 tháng 9 2021 lúc 8:54

a) \(ĐK:x\ge0,x\ne1\)

 \(=\dfrac{3x+3\sqrt{x}-3-\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x+3\sqrt{x}-3-x+4+\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2x+4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{2\sqrt{x}}{\sqrt{x}-1}\)

b) \(P=\dfrac{2\sqrt{x}}{\sqrt{x}-1}< 0\Leftrightarrow\sqrt{x}-1< 0\Leftrightarrow\sqrt{x}< 1\)

Kết hợp với đk:

\(\Rightarrow0\le x< 1\)

Bình luận (1)
H24
Xem chi tiết
NT
15 tháng 8 2021 lúc 22:03

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

b: Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

c: Thay \(x=4-2\sqrt{3}\) vào P, ta được:

\(P=\dfrac{-3}{\sqrt{3}-1+3}=\dfrac{-3}{2+\sqrt{3}}=-6+3\sqrt{3}\)

Bình luận (0)
NT
15 tháng 8 2021 lúc 22:29

a: Để P nguyên thì \(-3⋮\sqrt{x}+3\)

\(\Leftrightarrow\sqrt{x}+3=3\)

hay x=0

Bình luận (0)
H24
Xem chi tiết
NT
11 tháng 7 2021 lúc 9:33

a, \(P=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2\sqrt{x}}{\sqrt{x}+2}+\dfrac{2+5\sqrt{x}}{4-x}\)ĐK : \(x\ge0;x\ne4\)

\(=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{3x-6\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b, Ta có :

 \(P=2\Rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\Rightarrow3\sqrt{x}=2\sqrt{x}+4\Leftrightarrow\sqrt{x}=4\Leftrightarrow x=16\)( tmđk )

Vậy P = 2 thì x = 16 

Bình luận (0)
DH
11 tháng 7 2021 lúc 9:34

undefined

Bình luận (0)
TG
11 tháng 7 2021 lúc 9:36

a) x ≥ 0; x ≠ 4

\(P=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+2\right)+2\sqrt{x}\left(\sqrt{x}-2\right)-2-5\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-2-5\sqrt{x}}{x-4}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)

b) P = 2

\(\Rightarrow\dfrac{3\sqrt{x}}{\sqrt{x}+2}=2\)

\(\Rightarrow3\sqrt{x}=2\sqrt{x}+4\)

\(\Rightarrow-\sqrt{x}+4=0\)

\(\Rightarrow\sqrt{x}=4\)

=> x = 16

Bình luận (0)
MN
Xem chi tiết
MY
13 tháng 8 2021 lúc 19:21

a,\(ĐK:x>0,x\ne1,x\ne4\)

\(A=\left[\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right]:\left[\dfrac{x-1-x+4}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right]\)

\(A=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{3}=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b,\(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(\sqrt{2}-1\right)^2\)

\(=>A=\dfrac{\sqrt{2}-3}{3\sqrt{2}-3}\)

Bình luận (0)
NT
13 tháng 8 2021 lúc 19:30

a) ĐKXĐ: \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-1>0\\\sqrt{x}-2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x>1\\x>4\end{matrix}\right.\) \(\Leftrightarrow x>4\)

\(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{\left(x-1\right)-\left(x-4\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\) 

\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) Ta có \(x=3-2\sqrt{2}=2-2\sqrt{2}+1=\left(2-1\right)^2=1\)

Thay \(x=1\) vào \(A\), ta được:

\(A=\dfrac{\sqrt{1}-2}{3\sqrt{1}}=\dfrac{1-2}{3}=-\dfrac{1}{3}\)

Bình luận (0)
NT
13 tháng 8 2021 lúc 23:02

a: ĐKXĐ: \(\left\{{}\begin{matrix}x>0\\x\notin\left\{1;4\right\}\end{matrix}\right.\)

Ta có: \(A=\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{x}+2}{\sqrt{x}-1}\right)\)

\(=\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}:\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

\(=\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

Bình luận (0)
H24
Xem chi tiết
CT
18 tháng 8 2021 lúc 13:16

a. \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)  \(\left(ĐKXĐ:x\ge0\right)\)

\(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{x-\sqrt{x}+1}{x\sqrt{x}+1}\right).\dfrac{4\sqrt{x}}{3}\)

\(\text{​​}\text{​​}N=\dfrac{\sqrt{x}+1}{x\sqrt{x}+1}.\dfrac{4\sqrt{x}}{3}\)

\(N=\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}\)

b.\(N=\dfrac{8}{9}\Leftrightarrow\dfrac{4\sqrt{x}}{3\left(x-\sqrt{x}+1\right)}=\dfrac{8}{9}\)

\(\Leftrightarrow3\sqrt{x}=2x-2\sqrt{x}+2\)

\(\Leftrightarrow\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{4}\\x=4\end{matrix}\right.\)

c.\(\dfrac{1}{N}>\dfrac{3\sqrt{x}}{4}\Leftrightarrow\dfrac{3\left(x-\sqrt{x}+1\right)}{4\sqrt{x}}>\dfrac{3\sqrt{x}}{4}\)

\(\Leftrightarrow x-\sqrt{x}+1>x\)

\(\Leftrightarrow x< 1\)

 

Bình luận (0)
NT
18 tháng 8 2021 lúc 13:55

a: ĐKXĐ: \(x\ge0\)

Ta có: \(N=\left(\dfrac{x+2}{x\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right)\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{x+2-x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\cdot\dfrac{4\sqrt{x}}{3}\)

\(=\dfrac{4\sqrt{x}}{3x-3\sqrt{x}+3}\)

Bình luận (0)
NB
Xem chi tiết
NT
26 tháng 7 2023 lúc 21:02

a: ĐKXĐ: x>0; x<>4

\(P=\left(2-\sqrt{x}+2\right)\cdot\dfrac{1}{\sqrt{x}-2}=\dfrac{4-\sqrt{x}}{\sqrt{x}-2}\)

b: P=2/3

=>(4-căn x)/(căn x-2)=2/3

=>2căn x-4=12-3căn x

=>5căn x=16

=>x=256/25

c: Khi x=8-2căn 7 thì \(P=\dfrac{4-\sqrt{7}+1}{\sqrt{7}-1-2}=\dfrac{5-\sqrt{7}}{\sqrt{7}-3}=-4-\sqrt{7}\)

Bình luận (0)
NC
Xem chi tiết
KL
3 tháng 2 2021 lúc 21:16

Điều kiện: x>2

P= \(\left(\dfrac{1}{\sqrt{x}-1}-\dfrac{1}{\sqrt{x}}\right):\left(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}-\dfrac{\sqrt{2}+2}{\sqrt{x}-1}\right)\)

P= \(\left(\dfrac{\sqrt{x}-\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{x-1-x+4}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

P= \(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}{3}\)

P= \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\)

b) P= \(\dfrac{1}{4}\)

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}\) =\(\dfrac{1}{4}\)

\(4\sqrt{x}-8=3\sqrt{x}\)

\(\sqrt{x}=8\)

⇔x=64 (TM) 

Vậy X=64(TMĐK) thì P=\(\dfrac{1}{4}\)

 

 

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 8 2021 lúc 14:30

a: ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có: \(A=\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+9}{x-9}\)

\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)

\(=\dfrac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{3}{\sqrt{x}+3}\)

b: Thay x=16 vào A, ta được:

\(A=\dfrac{3}{4+3}=\dfrac{3}{7}\)

Bình luận (1)
H24
30 tháng 8 2021 lúc 14:42

c)\(A=\dfrac{3}{\sqrt{x}+3}=\dfrac{1}{3}\)

\(\Rightarrow\sqrt{x}+3=9\\ \Rightarrow\sqrt{x}=6\\ \Rightarrow x=36\)

d) \(A=\dfrac{3}{\sqrt{x}+3}\)

Vì \(3>0;\sqrt{x}+3>0\Rightarrow\dfrac{3}{\sqrt{x}+3}>0\)

e) \(2A\in Z\Rightarrow\dfrac{6}{\sqrt{x}+3}\in Z \Rightarrow6⋮x+3\\\Rightarrow\sqrt{x}+3\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\Rightarrow x=\left\{0;9\right\}\)

Bình luận (1)
NK
Xem chi tiết
NT
5 tháng 8 2023 lúc 12:37

Sửa đề: \(A=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)

ĐKXĐ: x>0; x<>4

\(A=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{2\sqrt{x}}\)

\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{2\sqrt{x}}=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)

Bình luận (0)
HM
5 tháng 8 2023 lúc 12:38

Điều kiện: x>2, \(x\ne4\)

\(A=\left(\dfrac{\sqrt{x}}{\sqrt{x-2}}+\dfrac{\sqrt{x}}{\sqrt{x+2}}\right):\dfrac{2\sqrt{x}}{x-4}\\ \Rightarrow A=\sqrt{x}\cdot\dfrac{\sqrt{x+2}+\sqrt{x-2}}{\sqrt{x^2-4}}\cdot\dfrac{x-4}{2\sqrt{x}}\\ \Rightarrow A=\dfrac{\left(x-4\right)\left(\sqrt{x+2}+\sqrt{x-2}\right)}{2\sqrt{x^2-4}}\)

Bình luận (0)