KC

Những câu hỏi liên quan
TM
Xem chi tiết
NA
Xem chi tiết
VQ
Xem chi tiết
NA
Xem chi tiết
H24
13 tháng 5 2018 lúc 15:13

GTNN

p=x^2-2x-y

p=x^2-(2x+y)

x^2>=0=>P>=-(2x+y)=-4

x=0; y=4 thoa man dk

GTLN

3p=3x^2-4x-(2x+3y)

khong co gt ln

Bình luận (4)
NC
Xem chi tiết
NP
15 tháng 9 2018 lúc 15:18

\(A=4-x^2+2x=5-x^2+2x-1=5-\left(x^2-2x+1\right)\)

\(=5-\left(x-1\right)^2\le5\)nên GTLN của A là 5 đạt được khi x=1

\(B=-x^2+3x+6=-x^2+2.\frac{3}{2}x-\frac{9}{4}+\frac{33}{4}=-\left(x^2-2.\frac{3}{2}.x+\frac{9}{4}\right)+\frac{33}{4}\)

\(=-\left(x-\frac{3}{2}\right)^2+\frac{33}{4}\le\frac{33}{4}\) nên GTLN của B là \(\frac{33}{4}\) đạt được khi \(x=\frac{3}{2}\)

Bình luận (0)
MP
Xem chi tiết
TC
5 tháng 8 2021 lúc 9:25

Thật ra cách làm dạng bài này cũng gần giống như bài tìm gtnn bạn vừa hỏi, chỉ khác ở chỗ đặt dấu âm ra ngoài để tìm được gtln thôi. 

Bình luận (0)
TC
5 tháng 8 2021 lúc 9:35

undefined

Bình luận (0)
TC
5 tháng 8 2021 lúc 9:44

Bạn xem lại đề câu e nhé.

undefined

Bình luận (1)
NB
Xem chi tiết
HH
27 tháng 9 2020 lúc 12:42

Biến đổi xong nó thành hàm nhìn gọn lắm :)

\(=\sin^6x+\cos^6x+\frac{3}{4}.\frac{1}{2}\left[\sin\left(2x+\frac{\pi}{4}-2x+\frac{\pi}{4}\right)+\sin\left(2x+\frac{\pi}{4}+2x-\frac{\pi}{4}\right)\right]\)

\(=1+\frac{3}{8}\left(\sin\frac{\pi}{4}+\sin4x\right)\)

Bạn biện luận nốt nhé

Bình luận (0)
 Khách vãng lai đã xóa
HH
27 tháng 9 2020 lúc 21:53

Bạn muốn bài cụ thể như nào? Giải tiếp hay giải thích kỹ các bước phân tích cho bạn?

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
TH
Xem chi tiết