so sánh lũy thừa sau:
a.2115 và 275.498
b.19920 và 200315
so sánh 19920 và 200315
so sánh
a.19920 và 200315
b.2.354 và 6.5 32
a) Ta có:
\(199^{20}=\left[\left(199\right)^4\right]^5=1568239201^5\)
\(2003^{15}=\left[\left(2003\right)^3\right]^5=8036054027^5\)
Mà: \(8036054027>1568239201\)
\(\Rightarrow1568239201^5< 8036054027^5\)
\(\Rightarrow199^{20}< 2003^{15}\)
b) Xem lại đề
So sánh các số sau (có giải thích):
a, 53 và 35 32 và 23 26 và 62
b, 2015.2017 và 20162
c, 19920 và 200315
d, 399 và 1121 32n và 23n
Giúp mik vs ạ. Cảm ơn các bạn nhiều.
a, $5^{3} =5\times5\times5=125$
$3^{5} =3\times3\times3=27$
$125>27=>5^{3}>3^{5}$
$3^{2}=3\times3=9$
$2^{3}=2\times2\times2=8$
$9>8=>3^{2}>2^{3}$
$2^{6} =2\times2\times2\times2\times2\times2=64$
$6^{2}=6\times6=36$
$64>36=>2^{6}>6^{2}$
b, $2015\times2017=2015\times(2016+1)=2015\times2016+2015$
$2016^{2}=2016\times2016=2016\times(2015+1)=2016\times2015+2016$
$2015\times2016+2015<2016\times2015+2016=>2015\times2017<2016^{2}$
c, $199^{20}=199^{4\times5}=(199^{4})^{5}= 1568239201^{5}$
$2003^{15}=2003^{3\times5}=(2003^{3})^5 =8036054027^{5}$
$1568239201<8036054027=>199^{20}<2003^{15}$
d, $3^99 =3^{3\times33}=(3^{3})^{33}=27^{33}>27^{21}$
$11^{21}<27^{21}=>3^{99}>11^{21}$
$3^{2n}=9^n$
$2^{3n}=8^n$
$9>8=>3^{2n}>2^{3n}$
So sánh các số sau
a) 53 và 35
53 = 125
35 = 243
=> 53 < 35
32 và 23
32 = 9
23 = 8
=> 32 > 23
26 và 62
26 = 64
62 = 36
=> 26 > 62
b) 2015 x 2017 và 20162
2015 x 2017
= 2015 x ( 2016 + 1 )
= 2015 x 2016 + 2015
20162
= 2016 x 2016
= 2016 x ( 2015 + 1 )
= 2016 x 2015 + 2016
Vì: 2015 < 2016
=> 2015 x 2017 < 20162
c) 19920 và 200315
19920 < 20020 = ( 23 x 52 )20 = 260 x 540
200315 > 200015 = ( 2 x 103 )15 = ( 24 x 53 )15 = 260 x 545
=> 200315 > 19920
d) 399 và 1121
399 = ( 33 )33 = 2733 > 2721
Vì: 27 > 11
=> 2721 > 1121
=> 399 > 1121
32n và 23n
32n = ( 32 )n = 9n
23n = ( 23 )n = 8n
Vì 9 > 8
=> 9n > 8n
=> 32n > 23n
Vậy 32n > 23n
Các bn ơi, cho mk hỏi:
so sánh các số sau:
a) 7.213 và 216 b) 19920 và 200315
c) 202303 và 303202
Nhanh nhé, mk đâng gấp
a, Ta có : \(8>7\)
\(\Rightarrow2^{13}.8=2^{16}>2^{13}.7\)
b, Ta có : \(199^{20}< 200^{20}=2^{60}.5^{40}\)
Mà \(2003^{15}>2000^{15}=2^{60}.2^{45}\)
Thấy : \(45>40\)
\(\Rightarrow2000^{15}>200^{20}\)
\(\Rightarrow2003^{15}>199^{20}\)
c, Ta có : \(\left\{{}\begin{matrix}202^{303}=\left(2.101\right)^{3.101}=\left(8.101^3\right)^{101}\\303^{202}=\left(3.101\right)^{2.101}=\left(9.101^2\right)^{101}\end{matrix}\right.\)
Mà \(8.101^3>9.101^2\)
\(\Rightarrow202^{303}>303^{202}\)
a) Ta có: \(2^{16}=2^{13}\cdot8\)
mà \(7< 8\)
nên \(7\cdot2^{13}< 2^{16}\)
b) \(199^{20}=1568239201^5\)
\(2003^{15}=8036054027^5\)
mà \(1568239201< 8036054027\)
nên \(199^{20}< 2003^{15}\)
c) Ta có: \(202^{303}=\left(202^3\right)^{101}\)
\(303^{202}=\left(303^2\right)^{101}\)
mà \(202^3>303^2\)
nên \(202^{303}>303^{202}\)
Câu 1 / so sánh 2 lũy thừa 3^23 và 5^12
Câu 2 / so sánh 2 lũy thừa 3^36 và 2^8.11^4
1) So sánh
a) 3 lũy thừa 200 và 2 lũy thừa 300
NHỚ TRÌNH BÀY PHÉP TÍNH VÀ SO SÁNH NHA!
3^200 = (3^2)^100 = 9^100
2^300 = (2^3)^100 = 8^100
Vì 9^100 > 8^100
Vậy 3^200 > 2^300
So Sánh 2 lũy thừa:(Biến đổi thành lũy thừa thì mới so sánh nhé)
8^5 và 3.4^7
\(8^5=\left(2^3\right)^5=2^{15}=2.2^{14}\)
\(3.4^7=3.\left(2^2\right)^7=3.2^{14}\)
Vì 2 < 3 nên 85 < 3 . 47
so sánh 4 lũy thừa 50 và 8 lũy thừa 30
450= ( 43 ) 50/3 = 64 50/3
830 =( 82 ) 15 = 6415
ta có 50/3 > 15 => 450 > 830
\(4^{50}\)= \(\left(2^2\right)^{^{50}^{ }}\)\(=2^{100}\)
\(8^{30}=\left(2^3\right)^{30}=2^{90}\)
vì \(2^{100}>2^{90}\)nên\(4^{50}>8^{30}\)
so sánh 28 lũy thừa 51 và 240 lũy thừa 40
so sánh 333 lũy thừa 444 và 444 lũy thừa 333
\(333^{444}=333^{3^{111}}\)
\(444^{333}=444^{3^{111}}\)
Vì \(444^{3^{111}}>333^{3^{111}}\)
=> \(333^{444}< 444^{333}\)
Ta có: \(333^{444}=\left(333^4\right)^{111}\)
\(444^{333}=\left(444^3\right)^{111}\)
Vì 333444 và 444333 có cùng số mũ là 111. nên ta so sánh 3334 và 4443
3334=(3.111)4=34.1114=81.1114
4443=(4.111)3=43.1113=64.1113
Vì 81.1114>64.1113 => 3334>4443
=> 333444 > 444333