Những câu hỏi liên quan
AV
Xem chi tiết
AV
Xem chi tiết
LG
Xem chi tiết
NT
18 tháng 8 2021 lúc 23:10

a: Thay \(x=\dfrac{1}{4}\) vào A, ta được:

\(A=\left(\dfrac{1}{2}+1\right):\left(\dfrac{1}{2}-2\right)=\dfrac{3}{2}:\dfrac{-3}{2}=-1\)

b: Ta có: \(B=\dfrac{\sqrt{x}+2}{\sqrt{x}-3}+\dfrac{\sqrt{x}-8}{x-5\sqrt{x}+6}\)

\(=\dfrac{x-4+\sqrt{x}-8}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}-2}\)

Bình luận (0)
NT
19 tháng 8 2021 lúc 0:38

c: Để B là số tự nhiên thì \(\sqrt{x}+4⋮\sqrt{x}-2\)

\(\Leftrightarrow\sqrt{x}-2\in\left\{1;2;3;6\right\}\)

\(\Leftrightarrow\sqrt{x}\in\left\{3;4;5;8\right\}\)

hay \(x\in\left\{16;25;64\right\}\)

Bình luận (0)
AL
Xem chi tiết
H24
18 tháng 10 2021 lúc 22:12

a. B = \(\dfrac{\sqrt{36}}{\sqrt{36}-3}=\dfrac{6}{6-3}=2\)

 

Bình luận (0)
NT
18 tháng 10 2021 lúc 22:20

a: Thay x=36 vào B, ta được:

\(B=\dfrac{6}{6-3}=\dfrac{6}{3}=2\)

Bình luận (0)
CC
Xem chi tiết
MB
Xem chi tiết
NT
11 tháng 9 2023 lúc 20:08

loading...  loading...  

Bình luận (0)
LT
Xem chi tiết
NT
27 tháng 10 2023 lúc 13:33

a: Khi x=25 thì \(A=\dfrac{5-2}{5-3}=\dfrac{3}{2}\)

b: P=A*B

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\left(\dfrac{6x+6\sqrt{x}-12}{x+5\sqrt{x}+4}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\left(\dfrac{6x+6\sqrt{x}-12}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+4\right)}-\dfrac{5\sqrt{x}}{\sqrt{x}+4}\right)\)

\(=\dfrac{\sqrt{x}-2}{\sqrt{x}-3}\cdot\dfrac{6x+6\sqrt{x}-12-5x-5\sqrt{x}}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x+\sqrt{x}-12}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}-1}=\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\)

c: \(\sqrt{P}< =\dfrac{1}{2}\)

=>0<=P<=1/4

=>\(\left\{{}\begin{matrix}P>=0\\P-\dfrac{1}{4}< =0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{\sqrt{x}-2}{\sqrt{x}-1}>=0\\\dfrac{\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{1}{4}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{4\left(\sqrt{x}-2\right)-\sqrt{x}+1}{4\left(\sqrt{x}-1\right)}< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\\dfrac{3\sqrt{x}-7}{\sqrt{x}-1}< =0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< \sqrt{x}< =\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\1< x< \dfrac{49}{9}\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}\left[{}\begin{matrix}x>=4\\0< =x< 1\end{matrix}\right.\\x=\dfrac{49}{9}\end{matrix}\right.\)

=>\(4< =x< =\dfrac{49}{9}\)

mà x nguyên

nên \(x\in\left\{4;5\right\}\)

Bình luận (0)
NK
Xem chi tiết
HN
Xem chi tiết