Những câu hỏi liên quan
H24
Xem chi tiết
H24
4 tháng 1 2021 lúc 12:28

Có : \(S=1+2+2^2+2^3+....+2^{99}\)

\(\Rightarrow2S=2+2^2+2^3+....+2^{100}\)

\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{100}\right)-\left(1+2+2^2+....+2^{99}\right)\)

\(\Rightarrow S=2^{100}-1< 2^{100}\)

Vậy \(S< 2^{100}\)

Bình luận (0)
IT
4 tháng 1 2021 lúc 19:55

 S=1+2+22+23+....+299

⇒2S=2+22+23+....+2100

⇒2S−S=2100-1

S=2100-1

vì 2100 -1<2100

⇒S<2100

 

Bình luận (0)
TN
Xem chi tiết
TN
28 tháng 12 2021 lúc 20:36

giups mình với

 

Bình luận (0)
H24
28 tháng 12 2021 lúc 20:37

1+2+22+23+......22022>5.2221

Bình luận (0)
PM
Xem chi tiết
PP
7 tháng 5 2021 lúc 23:19

2A=2*(1+2+22+...+22020)=2+22+...+22021

2A-A=(1+2+22+...+22021)-(1+2+22+...+22020)

A=22021-1<2021

Bình luận (1)

Giải:

A=1+2+22+23+...+22020

2A=2+22+23+24+...+22021

2A-A=(2+22+23+24+...+22021)-(1+2+22+23+...+22020)

A=22021-1

⇒A<22021

Chúc bạn học tốt!

Bình luận (1)
H24
Xem chi tiết
H24
29 tháng 5 2021 lúc 15:49

Đặt A = \(1+2+2^2+2^3+2^4+....+2^{100}\)

2A = \(2\left(1+2+2^2+2^3+2^4+....+2^{100}\right)\)

\(2+2^2+2^3+2^4+2^5+...+2^{101}\)

2A - A = \(\left(2+2^2+2^3+2^4+2^5+....+2^{101}\right)-\left(1+2^2+2^3+2^4+...+2^{100}\right)\)

\(2^{101}-1\)

 

Bình luận (0)
MT
29 tháng 5 2021 lúc 15:59

undefined

Bình luận (0)
H24

Nếu bạn bt lm r thì ko nên ra câu hỏi nx đâu .

Bình luận (0)
DT
Xem chi tiết
PM
Xem chi tiết
PM
6 tháng 8 2021 lúc 9:27

giúp minh

Bình luận (0)
TC
6 tháng 8 2021 lúc 9:29

undefined

Bình luận (0)
TC
6 tháng 8 2021 lúc 9:36

undefined

Bình luận (0)
VV
Xem chi tiết
LH
10 tháng 9 2023 lúc 20:56

�=1+2+22+...+29

2�=2(1+2+22+...+210)

2�=2+22+23+...+29

2�−�=(2+22+23+...+210)−(1+2+22+...+29)

\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

 

HT

Bình luận (0)
NT
10 tháng 9 2023 lúc 20:59

\(S=1+2+2^2+...+2^9\)

\(S=\dfrac{2^{9+1}-1}{2-1}\)

\(S=2^{10}-1=1023\)

\(5.2^8=5.256=1280>1023\)

\(\Rightarrow S< 5.2^8\)

Bình luận (0)
DK
10 tháng 9 2023 lúc 21:05

S < 5. 2^8

Bình luận (0)
LL
Xem chi tiết
NT
27 tháng 6 2021 lúc 21:37

Sửa đề: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

Ta có: \(S=\dfrac{1}{20}+\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{50}\)

\(=\dfrac{1}{20}+\left(\dfrac{1}{21}+\dfrac{1}{22}+...+\dfrac{1}{30}\right)+\left(\dfrac{1}{31}+\dfrac{1}{32}+...+\dfrac{1}{40}\right)+\left(\dfrac{1}{41}+\dfrac{1}{42}+...+\dfrac{1}{50}\right)\)

\(\Leftrightarrow S>\dfrac{1}{20}+\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}=\dfrac{1}{4}+\dfrac{1}{3}+\dfrac{1}{4}\)

\(\Leftrightarrow S>\dfrac{1}{4}+\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{3}{4}\)(đpcm)

Bình luận (1)
TP
3 tháng 5 2022 lúc 20:07

2/3+3/4+...=2+1/2

Bình luận (0)
PL
Xem chi tiết
H24
14 tháng 7 2023 lúc 8:04

\(S=1+2+2^2+2^3+...+2^9\) 

Đặt \(2S=2+2^2+2^3+2^4+...+2^{10}\) 

\(2S-S=2^{10}-1\) hay \(S=2^{10}-1< 2^{10}\)

\(\Rightarrow\) \(2^{10}=2^2.2^8< 5.2^8\) 

Vậy \(S< 5.2^8\)

\(#Tuyết\)

Bình luận (1)
NT
14 tháng 7 2023 lúc 8:04

2S=2+2^2+...+2^10

=>S=2^10-1=1023

5*2^8=256*5=1280

=>S<5*2^8

Bình luận (0)
NN
14 tháng 7 2023 lúc 8:07

`@` `\text {Answer}`

`\downarrow`

`S = 1 + 2 + 2^2 + 2^3 + ... + 2^9`

`=> 2S = 2 + 2^2 + 2^3 + ... + 2^10`

`=> 2S - S = (2+2^2 + 2^3 + ... + 2^10) - (1 + 2 + 2^2 + 2^3+...+2^9)`

`=> S = 2^10 - 1`

Mà `2^10 - 1 < 2^10`

`=> S < 2^10 (1)`

Ta có:

 `2^10 = 2^7*8`

Mà `5*2^8 = 5* 2 * 2^7 = 10* 2^7`

Vì `10 > 8 => 2^7 * 8 < 2^7  * 10 (2)`

Từ `(1)` và `(2)`

`=> S < 5 * 2^7``.`

Bình luận (0)
ND
Xem chi tiết
BD
5 tháng 8 2023 lúc 21:48

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)

Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B

\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)

Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C

\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)

\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)

Bình luận (0)
HM
5 tháng 8 2023 lúc 21:35

\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)

Bình luận (0)