Cho: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A<\frac{1}{9}\)
Cho \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A<\frac{1}{9}\)
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}
Cho: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A<\frac{1}{9}\)
Bài 1 : Cho A = \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}...\frac{79}{80}\)
Chứng minh rằng A < \(\frac{1}{9}\)
Bài 4 : Chứng minh rằng: 1.3.5.7....19 = \(\frac{11}{2}.\frac{12}{2}.\frac{13}{2}...\frac{20}{2}\)
Chứng minh rằng: \(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
Đặt \(A=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}\)
Ta có: \(\frac{1}{1+\sqrt{2}}>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\right)\)
\(\frac{1}{\sqrt{3}+\sqrt{4}}>\frac{1}{2}\left(\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{4}+\sqrt{5}}\right)\)
...
\(\frac{1}{\sqrt{79}+\sqrt{80}}>\frac{1}{2}\left(\frac{1}{\sqrt{79}+\sqrt{80}}+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
Cộng các bất đẳng thức trên lại với nhau, ta được:
\(A>\frac{1}{2}\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{80}+\sqrt{81}}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\frac{\sqrt{2}-1}{2-1}+\frac{\sqrt{3}-\sqrt{2}}{3-2}+...+\frac{\sqrt{81}-\sqrt{80}}{81-80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{81}-\sqrt{80}\right)\)
\(\Leftrightarrow A>\frac{1}{2}\left(\sqrt{81}-1\right)=\frac{1}{2}\cdot\left(9-1\right)=\frac{1}{2}\cdot8=4\)
\(\Leftrightarrow A>4\)(đpcm)
Cho
\(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{79}{80}\)
Chứng minh \(A
\(\frac{1.3.5...79}{2.4.6...80}\)= \(\frac{1.3.5...79}{\left(1.2\right).\left(2.2\right).\left(3.2\right)...\left(40.2\right)}\).\(\frac{1.3.5...79}{\left(1.2.3.4...40\right).\left(2.2.2.2...2.2\right)}\)=\(\frac{1.3.5...79}{\left(1.3.5...39\right).\left(2.4.6...40\right).2^{40}}\)<1/9
Cho biểu thức:
\(C=\frac{1}{2}x\frac{3}{4}x\frac{5}{6}x.....x\frac{79}{80}\)
Chứng minh C bé hơn \(\frac{1}{9}\)
\(C< \frac{2}{3}.\frac{4}{5}......\frac{80}{81}\Rightarrow C.C< \frac{C.2....80}{3.5....81}=\frac{1.2.3....79.80}{2.3.4....81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2mà:C>0\Rightarrow C< \frac{1}{9}\)
Shitbo ơi em có thể giải theo cách cấp 1 được không?
cách này được ko
\(C=\frac{1}{2}\times\frac{3}{4}\times\frac{5}{6}\times...\times\frac{79}{80}\)
\(\Rightarrow C_1< \frac{2}{3}\times\frac{4}{5}\times...\times\frac{80}{81}\)
\(\Rightarrow C^2< C.C_1=\frac{1}{2}\times\frac{2}{3}\times\frac{4}{5}\times...\times\frac{80}{81}=\frac{1}{81}=\left(\frac{1}{9}\right)^2\)
\(\Rightarrow C< \frac{1}{9}\)
cho A = \(^{\frac{1}{\sqrt{1+\sqrt{2}}}+\frac{1}{\sqrt{3+\sqrt{4}}}+...+\frac{1}{\sqrt{79+\sqrt{80}}}}\)
chứng minh A>4
dùng cách trục căn thức là ra
1. Chứng minh rằng
\(S=\frac{1}{\sqrt{1}+\sqrt{2}}+\frac{1}{\sqrt{3}+\sqrt{4}}+\frac{1}{\sqrt{5}+\sqrt{6}}+...+\frac{1}{\sqrt{79}+\sqrt{80}}>4\)
2. Chứng minh rằng
\(\frac{\sqrt{1}}{1}+\frac{\sqrt{2}}{2}+\frac{\sqrt{3}}{3}+...+\frac{\sqrt{200}}{200}>10+5\sqrt{2}\)
3. Cho a >= 1, b >= 1, chứng minh rằng
\(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
4. Giải phương trình
\(\sqrt{\left(x^2-2x+5\right)\left(x^2-4x\right)+7}+x^2-3x+6\)
LÀM PHIỀN M.N GIÚP MK. XIN CẢM ƠN !!!
Với mọi n nguyên dương ta có:
\(\left(\sqrt{n+1}+\sqrt{n}\right)\left(\sqrt{n+1}-\sqrt{n}\right)=1\Rightarrow\frac{1}{\sqrt{n+1}+\sqrt{n}}=\sqrt{n+1}-\sqrt{n}\)
Với k nguyên dương thì
\(\frac{1}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k+1}+\sqrt{k}}\Rightarrow\frac{2}{\sqrt{k-1}+\sqrt{k}}>\frac{1}{\sqrt{k-1}+\sqrt{k}}+\frac{1}{\sqrt{k+1}+\sqrt{k}}=\sqrt{k}-\sqrt{k-1}+\sqrt{k+1}-\sqrt{k}\)
\(=\sqrt{k+1}-\sqrt{k-1}\)(*)
Đặt A = vế trái. Áp dụng (*) ta có:
\(\frac{2}{\sqrt{1}+\sqrt{2}}>\sqrt{3}-\sqrt{1}\)
\(\frac{2}{\sqrt{3}+\sqrt{4}}>\sqrt{5}-\sqrt{3}\)
...
\(\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-\sqrt{79}\)
Cộng tất cả lại
\(2A=\frac{2}{\sqrt{1}+\sqrt{2}}+\frac{2}{\sqrt{3}+\sqrt{4}}+....+\frac{2}{\sqrt{79}+\sqrt{80}}>\sqrt{81}-1=8\Rightarrow A>4\left(đpcm\right)\)
3.
Theo bất đẳng thức cô si ta có:
\(\sqrt{b-1}=\sqrt{1.\left(b-1\right)}\le\frac{1+b-1}{2}=\frac{b}{2}\Rightarrow a.\sqrt{b-1}\le\frac{a.b}{2}\)
Tương tự \(\Rightarrow b.\sqrt{a-1}\le\frac{a.b}{2}\Rightarrow a.\sqrt{b-1}+b.\sqrt{a-1}\le a.b\)
Dấu "=" xảy ra khi và chỉ khi \(a=b=2\)
Tính
A=\(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.......................\frac{79}{80}\)