Những câu hỏi liên quan
TN
Xem chi tiết
NT
5 tháng 7 2021 lúc 21:50

a) Ta có: \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-x-4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4\sqrt{x}-6-2x+12\sqrt{x}-18}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-2x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

Bình luận (1)
TN
Xem chi tiết
TN
Xem chi tiết
AT
6 tháng 7 2021 lúc 9:02

a) \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\left(a>0\right)\)

\(=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\dfrac{\sqrt{a}\left(2\sqrt{a}+1\right)}{\sqrt{a}}+1\)

\(=a+\sqrt{a}-\left(2\sqrt{a}+1\right)+1=a-\sqrt{a}\)

b) Ta có: \(a-\sqrt{a}=a-2.\sqrt{a}.\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)

\(\ge-\dfrac{1}{4}\)

\(\Rightarrow P_{min}=-\dfrac{1}{4}\) khi \(a=\dfrac{1}{4}\)

Bình luận (0)
TN
Xem chi tiết
LH
6 tháng 7 2021 lúc 11:21

a.\(Đk:a>0\)

\(A=\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)\left(a-\sqrt{a}+1\right)}{a-\sqrt{a}+1}-\left(2\sqrt{a}+1\right)+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1=a-\sqrt{a}\)

b)\(A=a-\sqrt{a}=\left(a-\sqrt{a}+\dfrac{1}{4}\right)-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\left(tm\right)\)

Vậy \(A_{min}=-\dfrac{1}{4}\)

Bình luận (0)
TN
Xem chi tiết
LH
6 tháng 7 2021 lúc 16:10

ĐK:\(x\ge0;x\ne9\)

a) \(P=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\dfrac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+x-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

b)\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=1+\dfrac{2}{\sqrt{x}+2}\le1+\dfrac{2}{0+2}=2\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(P_{max}=2\)

Bình luận (0)
TN
Xem chi tiết
NL
6 tháng 7 2021 lúc 15:51

a, ĐKXĐ : \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)

Ta có : \(P=\left(\dfrac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

\(=\left(\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)-\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right).\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{x-2\sqrt{x}+\sqrt{x}-2-x-2\sqrt{x}+\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}.\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{-2\sqrt{x}}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\dfrac{\left(x-1\right)^2}{2}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)}=-\sqrt{x}\left(\sqrt{x}-1\right)\)

b, Ta có : \(P=-x+\sqrt{x}=-x+\dfrac{2.\sqrt{x}.1}{2}-\dfrac{1}{4}+\dfrac{1}{4}\)

\(=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

Vậy \(Max=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{4}\)

Bình luận (0)
AH
6 tháng 7 2021 lúc 15:51

Lời giải:

ĐKXĐ: $x\geq 0; x\neq 1$

a. 

\(A=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(1-x)^2}{2(x+2\sqrt{x}+1)}=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2(\sqrt{x}+1)^2}{2(\sqrt{x}+1)^2}\)

\(=\frac{(\sqrt{x}-2)(x-1)}{2}-\frac{(\sqrt{x}+2)(\sqrt{x}-1)^2}{2}=\frac{2\sqrt{x}-2x}{2}=\sqrt{x}-x\)

b.

$\sqrt{x}-x=\frac{1}{4}-(x-\sqrt{x}+\frac{1}{4})$

$=\frac{1}{4}-(\sqrt{x}-\frac{1}{2})^2$

$\leq \frac{1}{4}$

Vậy GTLN của biểu thức là $\frac{1}{4}$. Giá trị này đạt tại $\sqrt{x}-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{4}$ (thỏa đkxđ)

 

Bình luận (0)
TN
Xem chi tiết
LH
5 tháng 7 2021 lúc 20:24

a) ĐK:\(x\ge0;x\ne9\)

\(P=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)

b)\(P=-\dfrac{3}{\sqrt{x}+3}\) 

Có \(\sqrt{x}+3\ge3;\forall x\ge0\)

\(\Leftrightarrow-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{1}{3}\)

\(P_{min}=-\dfrac{1}{3}\Leftrightarrow x=0\)

Bình luận (0)
NT
5 tháng 7 2021 lúc 20:21

a) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)

\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)

\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)

\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)

\(=\dfrac{-3}{\sqrt{x}+3}\)

Bình luận (0)
TN
Xem chi tiết
NT
5 tháng 7 2021 lúc 21:30

a) Ta có: \(P=\left(\dfrac{\sqrt{x}+\sqrt{y}}{1-\sqrt{xy}}+\dfrac{\sqrt{x}-\sqrt{y}}{1+\sqrt{xy}}\right):\left(1+\dfrac{x+2xy+y}{1-xy}\right)\)

\(=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+2xy+y}{1-xy}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}\cdot\dfrac{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}{x+xy+y+1}\)

\(=\dfrac{2\sqrt{x}\left(y+1\right)}{\left(y+1\right)\left(x+1\right)}=\dfrac{2\sqrt{x}}{x+1}\)

Bình luận (0)
LH
5 tháng 7 2021 lúc 21:35

Đk:\(xy\ne1;x\ge0;y\ge0\)

 \(P=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)\left(1+\sqrt{xy}\right)+\left(\sqrt{x}-\sqrt{y}\right)\left(1-\sqrt{xy}\right)}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1-xy+x+y+2xy}{1-xy}\)

\(=\dfrac{\sqrt{x}+x\sqrt{y}+\sqrt{y}+y\sqrt{x}+\sqrt{x}-x\sqrt{y}-\sqrt{y}+y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{1+x+y+xy}{1-xy}\)

\(=\dfrac{2\sqrt{x}+2y\sqrt{x}}{\left(1-\sqrt{xy}\right)\left(1+\sqrt{xy}\right)}:\dfrac{\left(1+x\right)\left(1+y\right)}{1-xy}\)\(=\dfrac{2\sqrt{x}\left(1+y\right)}{1-xy}.\dfrac{1-xy}{\left(1+x\right)\left(1+y\right)}=\dfrac{2\sqrt{x}}{1+x}\)

b) Áp dụng AM-GM có:

\(1+x\ge2\sqrt{x}\Leftrightarrow\)\(\dfrac{2\sqrt{x}}{1+x}\le1\)

Dấu "=" xảy ra khi x=1 (tm)

Vậy \(P_{max}=1\)

Bình luận (0)
TN
Xem chi tiết
NT
5 tháng 7 2021 lúc 20:37

a) Ta có: \(P=\dfrac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\dfrac{2a+\sqrt{a}}{\sqrt{a}}+1\)

\(=\sqrt{a}\left(\sqrt{a}+1\right)-2\sqrt{a}-1+1\)

\(=a+\sqrt{a}-2\sqrt{a}\)

\(=a-\sqrt{a}\)

Bình luận (0)
LH
5 tháng 7 2021 lúc 20:46

b)\(P=a-\sqrt{a}=a-2.\dfrac{1}{2}\sqrt{a}+\dfrac{1}{4}-\dfrac{1}{4}=\left(\sqrt{a}-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\ge-\dfrac{1}{4}\)

Dấu "=" xảy ra khi \(\sqrt{a}=\dfrac{1}{2}\Leftrightarrow a=\dfrac{1}{4}\)

Vậy \(P_{min}=-\dfrac{1}{4}\)

Này, mình nói bạn Thịnh là bài này mk nghĩ ý b bạn vẫn làm được mà bạn chỉ làm mỗi ý a là sao? Làm ý a bỏ ý b hả, zì kì thế

Bình luận (0)