Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
NT
Xem chi tiết
DH
Xem chi tiết
TT
6 tháng 9 2015 lúc 12:20

Đặt 2015 = a Ta có :

\(\sqrt{1+a^2+\frac{a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a+1\right)^2+a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a+1\right)^2+a^2\left(a^2+2a+1+1\right)}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a+1\right)^2+a^4+2a^3+2a^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{a^4+2a^2\left(a+1\right)+\left(a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(=\sqrt{\frac{\left(a^2+a+1\right)^2}{\left(a+1\right)^2}}+\frac{a}{a+1}\)

\(\frac{a^2+a+1}{a+1}+\frac{a}{a+1}=\frac{a^2+2a+1}{a+1}=\frac{\left(a+1\right)^2}{a+1}=a+1=2015+1=2016\)

Bình luận (0)
NH
Xem chi tiết
AN
27 tháng 7 2017 lúc 14:52

Ta có:

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n\left(n+1\right)}\left(\sqrt{n+1}+\sqrt{n}\right)}\)

\(=\frac{\left(\sqrt{n+1}-\sqrt{n}\right)}{\sqrt{n\left(n+1\right)}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Thế vô bài toán được

\(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{2016\sqrt{2015}+2015\sqrt{2016}}\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

\(=1-\frac{1}{\sqrt{2016}}\)

Bình luận (0)
TV
Xem chi tiết
TN
27 tháng 9 2015 lúc 16:40

Đề viết sai nha bạn phải là \(-\frac{2015^2}{2016^2}\)

\(=\sqrt{1+2015^2-\frac{2015^2}{2016^2}}+\frac{2015}{2016}\)

\(=\sqrt{\left(1+2015-\frac{2015}{2016}\right)^2}+\frac{2015}{2016}\)

\(=1+2015-\frac{2015}{2016}+\frac{2015}{2016}\)

\(=2016\)

tick cho mình nha

Bình luận (0)
H24
Xem chi tiết
BC
Xem chi tiết
HB
Xem chi tiết
NP
Xem chi tiết
TT
23 tháng 6 2017 lúc 18:43

\(\frac{1}{\left(k+1\right)\sqrt{k}+k\left(\sqrt{k+1}\right)}=\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)^2k-k^2\left(k+1\right)}\) 

                                                 =\(\frac{\left(k+1\right)\sqrt{k}-k\left(\sqrt{k+1}\right)}{\left(k+1\right)k\left(k+1-k\right)}\)

                                                    =\(\frac{1}{\sqrt{k}}-\frac{1}{\sqrt{k+1}}\)

áp dụng vào biểu thức ta có\(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+....+\frac{1}{\sqrt{2015}}-\frac{1}{\sqrt{2016}}\)

                       =\(1-\frac{1}{\sqrt{2016}}\)

   đến đây cậu tự giải nốt nhé

Bình luận (0)
NH
23 tháng 6 2017 lúc 15:39

bạn coi thử sách VHB đi hình như có đấy

Bình luận (0)
NP
23 tháng 6 2017 lúc 15:41

mình ko có sách đấy 

Bình luận (0)
TT
Xem chi tiết