Những câu hỏi liên quan
PB
Xem chi tiết
CT
25 tháng 9 2017 lúc 9:11

Từ đề bài ta có A= 3n+1 (32 + 1) + 2n+1 (2 +1) = 3n .3.2.5 + 2n .2.3

=> ĐPCM;

Bình luận (0)
PB
Xem chi tiết
CT
3 tháng 10 2019 lúc 5:41

A = 3 n + 3 + 3 n + 1 + 2 n + 2 + 2 n + 1 = 3 n . 27 + 3 + 2 n + 1 . 4 + 2 = 3 n .30 + 2 n .6 = 6. 3 n .5 + 2 n ⋮ 6

Bình luận (0)
H24
Xem chi tiết
NT
30 tháng 7 2023 lúc 0:46

Ta có :

\(10\le n\le99\)

\(\Rightarrow21\le2n+1\le201\)

\(\Rightarrow2n+1\) là số chính phương lẻ (1)

\(\Rightarrow2n+1\in\left\{25;49;81;121;169\right\}\)

\(\Rightarrow n\in\left\{12;24;40;60;84\right\}\)

\(\Rightarrow3n+1\in\left\{37;73;121;181;253\right\}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow\dfrac{2n+1}{3n+1}=\dfrac{2.40+1}{3.40+1}=\dfrac{81}{121}=\left(\dfrac{9}{11}\right)^2\left(n=40\right)\)

\(\Rightarrow dpcm\)

\(\Rightarrow n=40⋮40\Rightarrow dpcm\)

Bình luận (0)
CL
Xem chi tiết
NL
21 tháng 11 2021 lúc 22:32

Do n nguyên dương, đặt \(n=m+1\) với m là số tự nhiên

\(\Rightarrow A=2^{3\left(m+1\right)-1}+2^{3\left(m+1\right)+1}+1=2^{3m+2}+2^{3\left(m+1\right)+1}+1\)

\(=4.8^m+2.8^{m+1}+1\)

Do \(8\equiv1\left(mod7\right)\Rightarrow\left\{{}\begin{matrix}8^m\equiv1\left(mod7\right)\\8^{m+1}\equiv1\left(mod7\right)\end{matrix}\right.\)

\(\Rightarrow4.8^m+2.8^{m+1}+1\equiv4+2+1\left(mod7\right)\)

\(\Rightarrow4.8^m+2.8^{m+1}+1⋮7\)

Bình luận (1)
TH
Xem chi tiết
NH
Xem chi tiết
DH
16 tháng 7 2021 lúc 0:56

Đặt \(2n+1=a^2,3n+1=b^2\).

\(15n+8=9\left(2n+1\right)-\left(3n+1\right)=9a^2-b^2=\left(3a-b\right)\left(3a+b\right)\)

Hiển nhiên \(3a+b>1\).

Nếu \(3a-b=1\Rightarrow b+1⋮3\).

mà \(b^2\equiv1\left(mod3\right)\Leftrightarrow b\equiv1\left(mod3\right)\Leftrightarrow b\equiv2\left(mod3\right)\)mâu thuẫn

do đó \(3a-b\ne1\).

Do đó \(15n+8\)là hợp số. 

Bình luận (0)
 Khách vãng lai đã xóa
BM
Xem chi tiết
AK
13 tháng 1 2019 lúc 11:51

Sử dụng phương pháp quy nạp 

Bình luận (0)
BM
13 tháng 1 2019 lúc 23:16

Dùng sao hả bạn,giúp mk vói😢

Bình luận (0)
TT
9 tháng 2 2020 lúc 11:45

Ta thấy : \(n\inℤ^+\Rightarrow n=k+1\left(k\inℕ\right)\)

Khi đó : \(A=2^{3\left(k+1\right)+1}+2^{3\left(k+1\right)-1}+1\)

\(=2^{3k+4}+2^{3k+2}+1\)

\(=8^k.16+8^k.4+1\equiv1.2+1.4+1\equiv0\left(mod7\right)\)

Do vậy : \(A⋮7\) mà \(A>7\forall n\inℤ^+\)

\(\Rightarrow\)\(A=2^{3n+1}+2^{3n-1}+1\) là hợp số (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
PB
Xem chi tiết
CT
4 tháng 10 2018 lúc 7:49
Bình luận (0)
VT
Xem chi tiết
NC
3 tháng 4 2020 lúc 16:36

Câu hỏi của Đình Hiếu - Toán lớp 7 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa