Những câu hỏi liên quan
LN
Xem chi tiết
LN
15 tháng 9 2021 lúc 8:52
a) y=3-cos^2x b)4-|sin 2x|-5 Câu hỏi này mới đúng?
Bình luận (0)
 Khách vãng lai đã xóa
VN
Xem chi tiết
TK
Xem chi tiết
AH
29 tháng 12 2023 lúc 23:25

Lời giải:
$A=(2x+5)^4+3$

Ta thấy: $(2x+5)^4\geq 0$ với mọi $x$

$\Rightarrow A=(2x+5)^4+3\geq 0+3=3$
Vậy $A_{\min}=3$

Giá trị này đạt được khi $2x+5=0\Leftrightarrow x=\frac{-5}{2}$

Bình luận (0)
HA
Xem chi tiết
VL
22 tháng 12 2019 lúc 8:12

A = /2*-5-3/1+/2*-5

cuteNhãn
Bình luận (0)
 Khách vãng lai đã xóa
KH
Xem chi tiết
SN
Xem chi tiết
TL
22 tháng 7 2015 lúc 13:14

Áp dụng BĐT: |a| + |b| \(\ge\) |a + b| . Dấu "=" xảy ra khi a.b \(\ge\) 0 

Ta có A = |3 -2x| + |5 - 2x| + 3 = |3 - 2x| + |2x - 5| + 3 \(\ge\) |3 - 2x + 2x - 5| + 3 = 2 + 3 = 5

Dấu "=" xảy ra khi (3 - 2x).(2x - 5) \(\ge\) 0 hay (2x - 3). (2x - 5) \(\le\) 0 

Vì 2x - 3 > 2x - 5 nên 2x - 3 \(\ge\) 0 và 2x - 5 \(\le\) 0

=> x \(\le\) 5/2 và x \(\ge\) 3/2 => 3/2 \(\le\) x \(\le\) 5/2

Vậy Min A = 5 khi  3/2 \(\le\) x \(\le\) 5/2

 

Bình luận (0)
MT
22 tháng 7 2015 lúc 12:18

ta có

|3-2x|+|5-2x|+3=|2x-3|+|5-2x|+3\(\ge\)|2x-3+5-2x|+3=2+3=5

Vậy GTNN của |3-2x|+|5-2x|+3 là 5 tại:

2x-3\(\ge\)0 và 5-2x\(\ge\)0

=>x\(\ge\)3/2 và x\(\le\)5/2

=>3/2\(\le\)x\(\le\)5/2

Bình luận (0)
PL
Xem chi tiết
AH
30 tháng 7 2021 lúc 16:35

1.

$x(x+2)(x+4)(x+6)+8$

$=x(x+6)(x+2)(x+4)+8=(x^2+6x)(x^2+6x+8)+8$

$=a(a+8)+8$ (đặt $x^2+6x=a$)

$=a^2+8a+8=(a+4)^2-8=(x^2+6x+4)^2-8\geq -8$

Vậy $A_{\min}=-8$ khi $x^2+6x+4=0\Leftrightarrow x=-3\pm \sqrt{5}$

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:36

2.

$B=5+(1-x)(x+2)(x+3)(x+6)=5-(x-1)(x+6)(x+2)(x+3)$

$=5-(x^2+5x-6)(x^2+5x+6)$

$=5-[(x^2+5x)^2-6^2]$

$=41-(x^2+5x)^2\leq 41$

Vậy $B_{\max}=41$. Giá trị này đạt tại $x^2+5x=0\Leftrightarrow x=0$ hoặc $x=-5$

Bình luận (0)
AH
30 tháng 7 2021 lúc 16:41

3.

Đặt $x+3=a; 7-x=b$ thì $a+b=10$ 

$C=a^4+b^4$

Áp dụng BĐT Bunhiacopxky:

$(a^4+b^4)(1+1)\geq (a^2+b^2)^2$

$\Rightarrow C\geq \frac{(a^2+b^2)^2}{2}$
$(a^2+b^2)(1+1)\geq (a+b)^2=100$

$\Rightarrow a^2+b^2\geq 50$

$\Rightarrow C\geq \frac{50^2}{2}=1250$

Vậy $C_{\min}=1250$

Giá trị này đạt tại $a=b=5\Leftrightarrow x=2$

 

 

Bình luận (0)
CN
Xem chi tiết
DN
Xem chi tiết