Tìm GTNN của biểu thức:
\(\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|\)
Tìm GTNN của biểu thức: \(A=\left|2x-1\right|+\left|x-3\right|+\left|x-4\right|+\left|x-5\right|\)
Tìm gtnn của biểu thức
\(A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\)
Ta có tính chất :
\(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)
\(\rightarrow A=\left|x+5\right|+\left|x+2\right|+\left|x-7\right|+\left|x-8\right|\ge\left|x+5+x+2+x-7+x-8\right|\)
\(\rightarrow A\ge\left|4x-8\right|\)
Vì \(\left|4x-8\right|\ge0\forall x\in R\) nên :
\(\rightarrow A\ge0\forall x\in R\)
Dấu "= " xảy ra khi :
\(\left|4x-8\right|=0\) \(\Leftrightarrow4x-8=0\)
\(\Leftrightarrow x=2\)
Vậy \(A_{min}=0\Leftrightarrow x=2\)
Bài 11 : Tìm GTNN của của các biểu thức sau :
a ) \(A=\left|x+3\right|+\left|2x-5\right|+\left|x-7\right|.\)
b ) \(B=\left|x+2\right|+\left|3x-4\right|+\left|x-2\right|+5\)
c ) \(M=\left|x+2\right|+\left|x-3\right|\)
d ) \(C=\left|2x+5\right|+\left|2x+1\right|+\left|2x-7\right|+\left|2x-4\right|+4\)
e ) \(D=\left|3x-6\right|+\left|3x-9\right|+\left|3x-12\right|+\left|3x-15\right|+2018\)
Tìm GTNN của biểu thức:
\(A=\dfrac{\left(x+5\right)\left(x-1\right)}{\left(x+3\right)^2}\)
Đặt \(x+3=t\ne0\Rightarrow x=t-3\)
\(A=\dfrac{\left(t+2\right)\left(t-4\right)}{t^2}=\dfrac{t^2-2t-8}{t^2}=-\dfrac{8}{t^2}-\dfrac{2}{t}+1=-8\left(\dfrac{1}{t}+\dfrac{1}{8}\right)^2+\dfrac{9}{8}\le\dfrac{9}{8}\)
\(A_{max}=\dfrac{9}{8}\) khi \(t=-8\) hay \(x=-11\)
Tìm GTNN của biểu thức sau
C=\(\left(2x-1\right)^2+\left(x+2\right)^2\)
D =\(2x^2+6x-5\)
E = \(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)\)
Cho các số dương x,y thỏa 4x+5y=7 . Tìm GTNN của biểu thức \(B=5\left|x\right|-3\left|y\right|\)
tìm GTNN của biểu thức: A= \(\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\):
\(A=\left|x-3\right|+\left|x-1\right|+\left|x+1\right|+\left|x+3\right|\)
\(=\left|3-x\right|+\left|x+3\right|+\left|1-x\right|+\left|x+1\right|\)
\(\ge\left|3-x+x+3\right|+\left|1-x+x+1\right|=8\)
\(minA=8\Leftrightarrow\left\{{}\begin{matrix}\left(3-x\right)\left(x+3\right)\ge0\\\left(1-x\right)\left(x+1\right)\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le1\)
Tìm GTNN của biểu thức:
\(\left|2021-x\right|+\dfrac{1}{\sqrt{\left(-2\right)^2}}.\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\dfrac{1}{2}\left|4040-2x\right|\)
\(A=\left|2021-x\right|+\left|2020-x\right|\)
\(A=\left|2021-x\right|+\left|x-2020\right|\ge\left|2021-x+x-2020\right|=1\)
\(A_{min}=1\) khi \(2020\le x\le2021\)
Bài 1: Tìm GTNN của biểu thức:
\(A=x^2+3x+7\)
\(B=2x^2-8x\)
\(C=x^2-4x+y^2-8y+6\)
\(D=\left(x+1\right)\left(x-2\right)\left(x-3\right)\left(x-6\right)\)
Bài 2: Tìm GTLN của biểu thức:
\(A=11-10x-x^2\)
\(B=-3x\left(x+3\right)-7\)
\(C=5-x^2+2x-4y^2-4y\)
\(D=\left|x-4\right|\left(2-\left|x-4\right|\right)\)
\(A=x^2+3x+7\)
\(=x^2+2.1,5x+2,25+4,75\)
\(=\left(x+1,5\right)^2+4,75\ge4,75\)
Vậy \(A_{min}=4,75\Leftrightarrow x=-1,5\)
\(B=2x^2-8x\)
\(=2\left(x^2-4x\right)\)
\(=2\left(x^2-4x+4-4\right)\)
\(=2\left[\left(x-2\right)^2-4\right]\)
\(=2\left(x-2\right)^2-8\ge-8\)
Vậy \(B_{min}=-8\Leftrightarrow x=2\)