cho a ,b,c la do dai 3 canh cua tam giac
cmr: a2+b2+c2+2bc>0
cho a,b,c la do dai 3 canh cua tam giac
cmr:a2+b2+c2+2bc>0
Ta có: a2 + b2 + c2 + 2bc = a2 + (b + c)2 > 0
(a2 > 0, với a là cạnh cảu tam giác, (b + c)2 > 0, với b và c là cá cạnh tam giác)
Cho a2+b2+c2=2p
a) a2-b2-c2+2bc=4(p-b)(p-c)
p2+(p-a)2+(p-b)2+(p-c)2=a2+b2+c2
2 là số mũ
Câu 6: ( 0,5 điểm)
Chứng minh rằng nếu a, b, c là ba cạnh của một tam giác thì:
a2+ b2+ c2 - 2ab -2bc- 2ac < 0
Vì a,b,c là 3 cạnh tam giác nên \(a+b>c\Leftrightarrow ac+bc>c^2\)
CMTT: \(ab+bc>b^2;ab+ac>a^2\)
Cộng vế theo vế \(\Leftrightarrow a^2+b^2+c^2< ab+bc+ca+ab+bc+ca\)
\(\Leftrightarrow a^2+b^2+c^2< 2ab+2bc+2ca\\ \Leftrightarrow a^2+b^2+c^2-2ab-2bc-2ca< 0\)
cho a+b+c=0 và a≠0,b≠0,c≠0 tính M
M=a2/a2-b2-c2 +b2/b2-c2-a2 +c2/c2-a2-b2
Ta có: a+b+c=0
nên a+b=-c
Ta có: \(a^2-b^2-c^2\)
\(=a^2-\left(b^2+c^2\right)\)
\(=a^2-\left[\left(b+c\right)^2-2bc\right]\)
\(=a^2-\left(b+c\right)^2+2bc\)
\(=\left(a-b-c\right)\left(a+b+c\right)+2bc\)
\(=2bc\)
Ta có: \(b^2-c^2-a^2\)
\(=b^2-\left(c^2+a^2\right)\)
\(=b^2-\left[\left(c+a\right)^2-2ca\right]\)
\(=b^2-\left(c+a\right)^2+2ca\)
\(=\left(b-c-a\right)\left(b+c+a\right)+2ca\)
\(=2ac\)
Ta có: \(c^2-a^2-b^2\)
\(=c^2-\left(a^2+b^2\right)\)
\(=c^2-\left[\left(a+b\right)^2-2ab\right]\)
\(=c^2-\left(a+b\right)^2+2ab\)
\(=\left(c-a-b\right)\left(c+a+b\right)+2ab\)
\(=2ab\)
Ta có: \(M=\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
\(=\dfrac{a^2}{2bc}+\dfrac{b^2}{2ac}+\dfrac{c^2}{2ab}\)
\(=\dfrac{a^3+b^3+c^3}{2abc}\)
Ta có: \(a^3+b^3+c^3\)
\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)\)
\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ca-cb+c^2\right)-3ab\left(a+b\right)\)
\(=-3ab\left(a+b\right)\)
Thay \(a^3+b^3+c^3=-3ab\left(a+b\right)\) vào biểu thức \(=\dfrac{a^3+b^3+c^3}{2abc}\), ta được:
\(M=\dfrac{-3ab\left(a+b\right)}{2abc}=\dfrac{-3\left(a+b\right)}{2c}\)
\(=\dfrac{-3\cdot\left(-c\right)}{2c}=\dfrac{3c}{2c}=\dfrac{3}{2}\)
Vậy: \(M=\dfrac{3}{2}\)
cho a,b,c là độ dài 3 cạnh tam giác.
a)a2/b2+b2/a2≥ a/b+b/a
b)a2/b+b2/a+c2/a≥ a+b+c
c)a2/(b+c)+b2/(a+c)+c2/(a+b)≥ (a+b+c)/2
cho a,b,c khác 0 ; a+b+c=0 tính a=1/(a2+b2-c2)+1/(b2+c2-a2)+1/(a2+c2-b2)
Câu hỏi của Hattory Heiji - Toán lớp 8 - Học toán với OnlineMath
tvbobnokb' n
iai
ni;bv nn0
Goi a,b,c la 3 do dai cua 3 canh trong tam giac. Va biet (a+b)(b+c)(a+c)=8abc .Chung minh rang tam giac da cho la tam giac deu
Cho tam giác ABC có a 2 = b 2 + c 2 + 2 b c . Số đo của góc A là
A. 135 °
B. 45 °
C. 120 °
D. 150 °
Ta có: a 2 = b 2 + c 2 + 2 b c ⇒ b 2 + c 2 − a 2 = − 2 b c
Áp dụng hệ quả định lí cosin trong tam giác ta có:
cos A = b 2 + c 2 − a 2 2. b c = − 2 b c 2 b c = − 2 2 ⇒ A ^ = 135 °
Chọn A
Do dai 3 canh cua tam giac ABC la a,b,c thoa man dieu kien
(a-b)2+(b - c)2 = 0
Chung minh tam giac ABC la tam giac deu.
do (a-b)2\(\ge\)0 ;(b-c)2\(\ge\)0
\(\Rightarrow\)(a-b)2+(b-c)2\(\ge\)0
mà (a-b)2+(b-c)2=0 (đề bài cho)
\(\Rightarrow\)(a-b)2=0;(b-c)2=0
\(\Rightarrow\)a-b=b-c=0
\(\Rightarrow\)a=b=c
Vậy tam giác ABC đều