1/ Tìm số nguyên tố p để p+2 và p+10 đều nhận giá trị là các số nguyên tố.
2/ Tìm cặp số tự nhiên (x;y) thỏa mãn x(y-1)=5y-12
1) Tìm số nguyên tố p để p+2 và p+10 đều nhận giá trị là các số nguyên tố.
2) Tìm cặp số tự nhiên (x ; y) thỏa mãn x ×(y — 1) = 5 × y — 12
1/ Tìm số nguyên tố p để p+2 và p+10 đều nhận giá trị là các số nguyên tố
2/ Tìm cặp số tự nhiên (x;y) thỏa mãn x(y-1)=5y-12
Giúp mk vs, gửi lời camon trc nha!!!
Tìm số nguyên tố p để p+2 và p+10 đều nhận giá trị là các số nguyên tố.
Giải nhanh hộ mik
+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn
+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3
Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại
Vậy p = 3
+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn
+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3
Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại
Vậy p = 3
+ Với p = 2 thì p + 2 = 2 + 2 = 4, là hợp số, loại
+ Với p = 3 thì p + 2 = 3 + 2 = 5, p + 10 = 3 + 10 = 13, là số nguyên tố, chọn
+ Với p > 3, do p nguyên tố nên p không chia hết cho 3 => p = 3k + 1 hhoặc p = 3k + 2 (k thuộc N*)
Nếu p = 3k + 1 thì p + 2 = 3k + 1 + 2 = 3k + 3, chia hết cho 3
Mà 1 < 3 < p + 2 => p + 2 là hợp số, loại
Nếu p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12, chia hết cho 3
Mà 1 < 3 < p + 10 => p + 10 là hợp số, loại
Vậy p = 3
Tìm P là số tự nhiên để P + 2 và P + 10 nguyên tố cùng nhau( ko phải là đều là số nguyên tố đâu)
Bài làm:
Với p = 3
=> p + 2 = 3 + 2 = 5 ( là số nguyên tố )
p + 10 = 3 + 10 = 13 ( là số nguyên tố )
Với p > 3 => p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1
=> p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k+1 ) chia hết cho 3 ( là hợp số trái với GT )
Với p = 3k + 2
=> p + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) chia hết cho 3 ( là hợp số trái với GT )
Vậy p = 3
BÀI LÀM
Với p = 3
\(\Rightarrow\) p + 2 = 3 + 2 = 5 ( là số nguyên tố )
p + 10 = 3 + 10 = 13 ( là số nguyên tố )
Với p > 3 => p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1
\(\Rightarrow\) p + 2 = 3k + 1 + 2 = 3k + 3 = 3.(k+1 ) chia hết cho 3 ( là hợp số trái với giả thiết )
Với p = 3k + 2
\(\Rightarrow\) p + 10 = 3k + 2 + 10 = 3k + 12 = 3.(k+4) chia hết cho 3 ( là hợp số trái với giả thiết )
Vậy p = 3
Các bn ơi nguyên tố cùng nhau chứ ko phải là đều là số nguyên tố đâu nha
a)Tìm x,biết(x+1)+(x+2)+…+(x+100)=5750
b)Tìm các cặp số nguyên a,b thỏa mãn :ab+2a-b=3
c)Tìm số nguyên tố p để p+10 và p+14 đều là các số nguyên tố
ai làm đúng và nhanh mình sẽ tick cho
a) (x+1)+(x+2)+(x+3)+........+(x+100)=5750
(x+x+...+x)+(1+2+3+...+100)=5750
(x.100)+(1+100).100:2=5750
(x.100)+5050=5750
x.100=5750-5050
x.100=700
x =700:100
x = 7
Vậy x = 7
c) trước hết cần chú ý rằng mọi số tự nhiên đều viết được dưới 1 trong 3 dạng: 3k, 3k +1 hoặc 3k +2(với k là số tự nhiên)
+) Nếu p = 3k vì p là số nguyên tố nên k = 1 => p = 3 => p+10 = 13 là số nguyên tố; p+14 = 17 là số nguyên tố (1)
+) Nếu p = 3k +1 => p +14 = 3k+1+14 = 3k+15 = 3(k+5) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mãn điều kiện đề bài) (2)
+) Nếu p=3k+2 => p+10 = 3k+2+10 = 3k+12 = 3(k+4) chia hết cho 3 và lớn hơn 3 nên là hợp số (loại vì không thỏa mẫn điều kiện đề bài) (3)
Từ (1), (2), (3) suy ra p = 3 là giá trị cần tìm.
Vậy nha còn câu b mình tạm thời chưa biết, chúc bạn học tốt
ab+2a-b=3
a(b+2)-b=3
a(b+2)-b+2=3+2
(b+2)(a-1)=5
sau đó bạn tìm các nghiệm cho chúng thỏa mãn nhé(cho là hai số trên thuộc ước của 5 rồi tính)
bài a và c theo mình thì bạn linh nhi nguyễn đặng thêm vào câu a cho hoàn chỉnh
câu c phải xét với số p nguyên tố bé nhất là 2 đã
sau đó thỏa mãn 3 rồi mới xét nhé
a) Tìm p là số tự nhiên sao cho p+1;p+2;p+4 đều là số nguyên tố.
b) Tìm số nguyên tố p sao cho 2p2+1 cũng là số nguyên tố.
c) Tìm số nguyên tố p sao cho p+10 và p+14 cũng là số nguyên tố
b) +) Nếu p = 3k + 1 (k thuộc N)=> 2p2 + 1 = 2.(3k + 1)2 + 1 = 2.(9k2 + 6k + 1) + 1 = 18k2 + 12k + 2 + 1 = 18k2 + 12k + 3 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
+) Nếu p = 3k + 2 (k thuộc N) => 2p2 + 1 = 2.(3k + 2)2 + 1 = 2.(9k2 + 12k + 4) + 1 = 18k2 + 24k + 8 + 1 = 18k2 + 24k + 9 chia hết cho 3 và lớn hơn 3 => 2p2 + 1 là hợp số (loại)
Vậy p = 3k, mà p là số nguyên tố => k = 1 => p = 3
a) +) Nếu p = 1 => p + 1 = 2; p + 2 = 3; p + 4 = 5 là số nguyên tố
+) Nếu p > 1 :
p chẵn => p = 2k => p + 2= 2k + 2 chia hết cho 2 => p+ 2 là hợp số => loại
p lẻ => p = 2k + 1 => p + 1 = 2k + 2 chia hết cho 2 => p+1 là hợp số => loại
Vậy p = 1
c) p = 2 => p + 10 = 12 là hợp số => loại
p = 3 => p + 10 = 13; p+ 14 = 17 đều là số nguyên tố => p = 3 thỏa mãn
Nếu p > 3 , p có thể có dạng
+ p = 3k + 1 => p + 14 = 3k + 15 chia hết cho 3 => loại p = 3k + 1
+ p = 3k + 2 => p + 10 = 3k + 12 là hợp số => loại p = 3k + 2
Vậy p = 3
Câu 1. (4 điểm)
Cho biểu thức:
a) Rút gọn biểu thức
b) Tìm giá trị nguyên của để nhận giá trị nguyên
Câu 2. (4 điểm)
a) Chứng minh rằng: với
b) Cho Tìm tất cả các số tự nhiên để là số nguyên tố.
Câu 1:
a) \(A=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}.\left(\dfrac{x+1}{3x}-x-1\right)\right]:\dfrac{x-1}{x}\)
\(=\left[\dfrac{2}{3x}-\dfrac{2}{3x}+\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)
\(=\left[\dfrac{2x}{x+1}+\dfrac{2}{x+1}\right]\dfrac{x}{x-1}\)
\(=\dfrac{2x+2}{x+1}.\dfrac{x}{x-1}\)
\(=\dfrac{2\left(x+1\right)}{x+1}.\dfrac{x}{x-1}\)
\(=2.\dfrac{x}{x-1}\)
\(=\dfrac{2x}{x-1}\)
Câu 1:
ĐKXĐ: \(x\notin\left\{0;-1;1\right\}\)
a) Ta có: \(A=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-x-1\right)\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\left(\dfrac{x+1}{3x}-\dfrac{3x\left(x+1\right)}{3x}\right)\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right):\dfrac{x-1}{x}\)
\(=\left(\dfrac{2\left(x+1\right)}{3x\left(x+1\right)}-\dfrac{2\cdot\left(-3x^2-2x+1\right)}{3x\left(x+1\right)}\right):\dfrac{x-1}{x}\)
\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=\dfrac{6x^2+6x}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=\dfrac{6x\left(x+1\right)}{3x\left(x+1\right)}:\dfrac{x-1}{x}\)
\(=2\cdot\dfrac{x}{x-1}=\dfrac{2x}{x-1}\)
b) Để A nguyên thì \(2x⋮x-1\)
\(\Leftrightarrow2x-2+2⋮x-1\)
mà \(2x-2⋮x-1\)
nên \(2⋮x-1\)
\(\Leftrightarrow x-1\inƯ\left(2\right)\)
\(\Leftrightarrow x-1\in\left\{1;-1;2;-2\right\}\)
\(\Leftrightarrow x\in\left\{2;0;3;-1\right\}\)
Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;3\right\}\)
Vậy: Để A nguyên thì \(x\in\left\{2;3\right\}\)
Tìm số tự nhiên n sao cho 11n là số nguyên tố.
Dùng số 1 và 5 để viết các số có ba chữ số là số nguyên tố.
CTR 2010! +2; 2010! +3; 2010!+10 đều là hợp số.
n là số tự nhiên Với n=1=>11n là số nguyên tố
Với n>1 =>11n chia hết cho 11 và n (n>1)
Vậy n =1 thif 11n là snt
tìm số nguyên tố p để:
a) p+10 và p+14 đều là các số nguyên tố
b) p+2; p+6; p+8; và p+14 đều là các số nguyên tố
nhanh tay nhận likenaof