Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
DA
Xem chi tiết
BA
1 tháng 1 2016 lúc 10:35

a,        n^2+4n+3 = (n^2-1) +4n+4 = (n-1)(n+1) +4(2a+1)+4 = (n-1)(n+1)+8a+4+4

=(n-1)(n+1)+8a+8 = (n-1)(n+1) + 8.(a+1) 

vì n là lẻ => (n-1) và (n+1) là hai số chẵn liên tiếp => (n-1)(n+1)*8

và 8(a+1)*8 => (n-1)(n+1) + 8.(a+1) *8

vậy n^2+4n+3*8 với n là lẻ ( dấu * là dấu chia hết nhé)

b,           n^3+3n^2-n-3 = (n^3-n) + (3n^2-3) = n(n^2-1) + 3(n^2-1)= n.(n-1)(n+1) + 3.(n-1)(n+1)

=>3(n-1)(n+1) *8 và n(n-1)(n+1)*8 ( vì theo nguyên lý câu a thì (n-1)(n+1)*8  )        (1)

vì n;n-1;n+1 là 3 số tự nhiên liên tiếp nên n(n+1)(n-1) chia hết cho 3 và 2 => n(n-1)(n+1)*6

và 3(n-1)(n+1)*3 mà n-1 là chẵn nên 3(n-1)(n+1)*2  => 3(n-1)(n+1)*6 

=> n(n-1)(n+1) + 3(n-1)(n+1) *6                 (2)

từ (1) và (2) => n(n-1)(n+1) + 3(n-1)(n+1) * 6.8 = 48 hay n^3+3n^2-n-3*48

vậy với n là lẻ thì n^3+3n^2 -n-3 luôn chia hết cho 48

 

Bình luận (0)
NH
Xem chi tiết
H24
Xem chi tiết
NC
23 tháng 10 2019 lúc 9:56

Câu hỏi của Lưu Thanh Vy - Toán lớp 8 - Học toán với OnlineMath

Em tham khaoe link trên.

Bình luận (0)
 Khách vãng lai đã xóa
CT
Xem chi tiết
H24
Xem chi tiết
TN
14 tháng 6 2017 lúc 20:15

\(a,n^5-5n^3+4n\)

\(=n\left(n^4-5n^2+4\right)\)

\(=n\left(n^4-n^2-4n^2+4\right)\)

\(=n\left[n^2\left(n^2-1\right)-4\left(n^2-4\right)\right]\)

\(=\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮2;3;4;5\)\(\Rightarrow\) \(\left(n-2\right)\left(n-1\right)n\left(n+1\right)\left(n+2\right)⋮120\) Hay \(n^5-5n^3+4⋮120\)

Bình luận (0)
ES
Xem chi tiết
PU
26 tháng 9 2017 lúc 19:41

a) \(n^2+4n+3\)

Vì n là số lẻ nên n : 2 dư 1

Gọi n = 2k + 1

Thay n = 2k + 1 vào \(n^2+4n+3\)

Có : \(n^2+4n+3\) \(=n^2+3n+n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)= ( n + 3 ) ( n + 1 ) (1)

Thay n = 2k + 1 vào (1)

=> (1) = \(\left(2k+1+3\right)\left(2k+1+1\right)\)

\(=\left(2k+4\right)\left(2k+2\right)\)

\(=2\left(k+2\right)2\left(k+1\right)=4\left(k+2\right)\left(k+1\right)\)

Xét: k + 2; k + 1 là hai số tự nhiên liên tiếp

=> \(\left(k+2\right)\left(k+1\right)\) \(⋮2\)

=> \(4\left(k+2\right)\left(k+1\right)⋮8\)

=> đpcm

Bình luận (0)
AT
26 tháng 9 2017 lúc 19:46

a) Ta có:

\(n^2+4n+3\)

\(=n^2+n+3n+3\)

\(=n\left(n+1\right)+3\left(n+1\right)\)

\(=\left(n+1\right)\left(n+3\right)\)

Mà n là số nguyên lẻ nên chia cho 2 dư 1 = 2k + 1 \(\left(k\in Z\right)\)

Do đó \(n^2+4n+3=\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)=\left(2k+2\right)\left(2k+4\right)=4\left(k+1\right)\left(k+2\right)\)

\(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên chia hết cho 2.

Vậy \(n^3+4n+3=\left(n+1\right)\left(n+3\right)=4\left(k+1\right)\left(k+2\right)\) chia hết cho 4; chi hết cho 2.

=> \(n^3+4n+3⋮4.2=8\)

Vậy ...

Bình luận (0)
AT
26 tháng 9 2017 lúc 19:53

b) Ta có:

\(n^3+3n^2-n-3\)

\(=\left(n+1\right)\left(n-1\right)\left(n-3\right)\)

Thay n = 2k +1, ta được:

\(\left(2k+1+1\right)\left(2k\right)\left(2k-2\right)\)

\(=2k.2.2.k\left(k+1\right)\left(k-1\right)\)

\(=8\left(k-1\right)k\left(k+1\right)\)

Mà k-1 ; k ; k+1 là 3 số nguyên liên tiếp, mà 3 số nguyên liên tiếp luôn chia hết cho 6.

\(\Rightarrow8\left(k-1\right)k\left(k+1\right)⋮6.8=48\)

Vậy ...

Bình luận (0)
NH
Xem chi tiết
HL
Xem chi tiết
LH
Xem chi tiết