Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

TA

Chứng minh rằng với mọi số n\(\inℕ\)( n lẻ ) thì n^3+4n^2+3n \(⋮\)8

DT
17 tháng 7 2018 lúc 17:25

Ta có : 

\(n^3+4n^2+n\) \(=n\left(n^2+4n+1\right)\)\(=n\left(n^2+n+3n+3\right)\)\(=n\left(n+1\right)\left(n+3\right)\)

Vì n và n+1 là 2 số tự nhiên liên tiếp => n(n+1) chia hết cho 2                   (1)

Vì n lẻ => n+1 và n+3 là 2 số chẵn liên tiếp => ( n+1 )( n+3 ) chia hết cho 4                  (2)

Từ (1) và (2) => n(n+1)(n+3) chia hết cho 8

hay \(n^3+4n^2+n⋮8\)

Bình luận (0)

Các câu hỏi tương tự
DA
Xem chi tiết
PB
Xem chi tiết
C9
Xem chi tiết
LL
Xem chi tiết
BK
Xem chi tiết
PB
Xem chi tiết
PB
Xem chi tiết
H24
Xem chi tiết
NT
Xem chi tiết