phan tich da thuc thanh nhan tu
x^2+6x+9
10x-25-x^2
8x^3-1/8
8x^3+12x^2+6xy^2+y^3
8x^3-12x^2+6x-1
phan tich da thuc thanh nhan tu chung
cái này dễ mà
= (2x)^3-3(2x)^2*1+2*3x*1^2-1^3
= (2x-1)^3
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
phan tich da thuc thanh nhan tu: a,x^2-y^2-x+3y-2 b,x^3+y^3+6xy+x+y-10
Câu a:
\(x^2-y^2-x+3y-2=\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}\right)-\left(y^2-2.y.\frac{3}{2}+\frac{9}{4}\right)\)
\(< =>\left(x-\frac{1}{2}\right)^2-\left(y-\frac{3}{2}\right)^2\)
\(< =>\left(x-\frac{1}{2}+y-\frac{3}{2}\right)\left(x-\frac{1}{2}-y+\frac{3}{2}\right)=\left(x+y-2\right)\left(x-y+1\right)\)
phan tich da thuc thanh nhan tu :
a) x3-5x2+5x-5
b) x3+42+x-6
c) x3+ y3+6x2+12x +8
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
phan tich cac da thuc sau thanh nhan tư
a) \(x^3+5x^2+6x\)
b)\(x^2-6x+8\)
c)\(2x^2+98+28x-8y^2\)
a) x^3 +5x^2+6x
= x^3+2x^2+3x^2+6x
=x*(x+3)*(x+2)
b) x^2-6x+8
= x^2-2x-4x+8
=(x-2)*(x-4)
c)2x^2+98+28x-8y^2
=2(x^2+14x+49-4y^2)
=2*[(x+7)^2-4y^2]
2*(x-7-2y)*(x-7+2y)
a) x2 + 2x2 + 3x2 + 6x
= x( x+2 ) + 3( x+2 )
=(x+3)(x+2)
b) x2 - 2x - 4x + 8
=x(x-2)-4(x-2)
=(x-4)(x-2)
c)
a) x3+5x2+6x
= x3+2x2+3x2+6x
= (x3+2x2)+(3x2+6x)
= x2(x+2)+3x(x+2)
= (x2+3x)(x+2)
= x(x+3)(x+2)
b) x2-6x+8
= x2-2x-4x+8
= (x2-2x)-(4x-8)
= x(x-2)-4(x-2)
= (x-4)(x-2)
c) 2x2+98+28x+8y2
= 2(x2+49+14x+4y2)
= 2[(x2+14x+49)+4y2]
= 2[(x+7)²+4y2]
= 2(x+7+2y)(x+7-2y)
Phan tich da thuc sau thanh nhan tu
6x^3+x^2+x+1
\(6x^3+x^2+x+1=\left(6x^3+3x^2\right)+\left(-2x^2-x\right)+\left(2x+1\right)\)
\(=3x^2.\left(2x+1\right)-x.\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)
K sai dau
giao an truong Tran dai nghia do
phan tich da thuc thanh nhan tu
3x^3 +12x^2 +12x
tu de bai suy ra: 3x(x^3+4x+4)=3x(x+2)^2
phan tich da thuc sau thanh nhan tu
6x^3+x^2+x+1
Phan tich da thuc thanh nhan tu:
1. [a+b]3 + [a-b]3
2. [a+b]3 - [a-b]3
3. 8x3 + 12x2y + 6x2y+ y3
zễ mà
1,2 áp dụng hằng đẳng thức
3)(2x+y)3
dùng hằng đẳng thức để phân tích:
1) \(\left(a+b\right)^3+\left(a-b\right)^3=\left[\left(a+b\right)+\left(a-b\right)\right]\left[\left(a+b\right)^2-\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+b^2-a^2+a^2-2ab+b^2\right)\)
\(=2a\left(a^2+3b^2\right)\)
2)\(\left(a+b\right)^3-\left(a-b\right)^3=\left[\left(a+b\right)-\left(a-b\right)\right]\left[\left(a+b\right)^2+\left(a+b\right)\left(a-b\right)+\left(a-b\right)^2\right]\)
\(=\left(a+b+a-b\right)\left(a^2+2ab+b^2+a^2-b^2+a^2-2ab+b^2\right)\)
\(=2a\left(3a^2+b^2\right)\)
3)\(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3.\left(2x\right)^2.y+3.2x.y^2+y^3=\left(2x+y\right)^3\)