Những câu hỏi liên quan
KH
Xem chi tiết
PB
Xem chi tiết
MD
Xem chi tiết
NT
30 tháng 8 2021 lúc 22:06

a: Xét ΔBFC và ΔCEB có

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Xét ΔABC có 

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy

Bình luận (0)
DV
30 tháng 8 2021 lúc 22:06

a) Xét tam giác BFC và CEB ta có: 

Góc FBC = góc ECB

BF = CE

BC cạnh chung 

=> tam giác BFC = tam giác CEB (c-g-c)

Bình luận (0)
LL
30 tháng 8 2021 lúc 22:07

a) Xét ΔBFC và ΔCEB có:

BF=EC(gt)

\(\widehat{FBC}=\widehat{ECB}\)(tam giác ABC cân tại A)

BC chung

=> ΔBFC=ΔCEB(c.g.c)

b) Xét tam giác ABC cân tại A có

AM là đường trung tuyến 

=> AM là đường cao của tam giác ABC(1)

Ta có: ΔBFC=ΔCEB(cmt)

\(\Rightarrow\widehat{BFC}=\widehat{BEC}=90^0\)

=> CF là đường cao của tam giác ABC(2)

Từ (1),(2) và BE là đường cao của tam giác ABC

=> BE,,CF,AM đồng quy

 

Bình luận (0)
MD
Xem chi tiết
NT
30 tháng 8 2021 lúc 22:25

a: Xét ΔBFC và ΔCEB có 

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Xét ΔBAC có

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy

Bình luận (0)
MD
Xem chi tiết
MD
30 tháng 8 2021 lúc 17:12

mọi người giúp minhf  với

 

 

Bình luận (0)
NT
30 tháng 8 2021 lúc 22:25

a: Xét ΔBFC và ΔCEB có 

BF=CE

\(\widehat{FBC}=\widehat{ECB}\)

BC chung

Do đó: ΔBFC=ΔCEB

b: Ta có: ΔBFC=ΔCEB

nên \(\widehat{BFC}=\widehat{CEB}\)

mà \(\widehat{CEB}=90^0\)

nên \(\widehat{BFC}=90^0\)

Ta có: ΔABC cân tại A

mà AM là đường trung tuyến ứng với cạnh đáy BC

nên AM là đường cao ứng với cạnh BC

Xét ΔBAC có

AM là đường cao ứng với cạnh BC

BE là đường cao ứng với cạnh AC

CF là đường cao ứng với cạnh AB

Do đó: AM,BE,CF đồng quy

Bình luận (0)
NL
Xem chi tiết
NC
15 tháng 8 2019 lúc 15:34

Câu hỏi của ✎﹏ Ƈøoȴ _ Ǥɩ®ʆ _☜♥☞ ✓ - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo nhé!

Bình luận (0)
NA
Xem chi tiết
DT
Xem chi tiết
H24
6 tháng 5 2024 lúc 20:20

ccccc

Bình luận (0)
H24
Xem chi tiết