(2a+1)2+(b+3)2+(5c-6)2<hoặc=0
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
(2a+1)^2+(b+3)^4+(5c-6)^2 nhỏ hơn hoặc bằng 0
Tìm a,b,c:
a) ( 2a+1)^2+ (b+3)^4 + ( 5c-6)^2 <=0
Vì cả 3 số hạng đều có mũ chẵn và tổng bằng 0
=>(2a+1)^2=0
=>2a+1=0
=>2a=-1
=>a=-0,5
=>b=-3
=>c=1,2
tìm a b c biet
(2a+1)^2 +(b+3)^4 + (5c-6)^2<0
(a-7)^2+(3b+2)^2+(4c-5)^6<=0
(12a-9)^2 +(8b+1)^4+(c+19)^6<=0
(2a+1)^2+(3b-1)^4<=3
a, Ta có: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\)<0
Vì (2a+1)2 >=0;(b+3)^4>=0;(5c-6)2 >=0
\(\Rightarrow\)Không tìm được a,b,c
Tìm a,b,c biết: (2a+1)^2+(b+3)^4+(5c-6)^2 nhỏ hơn hoặc bằng 0
Ta có: \(\left(2a+1\right)^2\ge0,\left(b+3\right)^4\ge0,\left(5c-6\right)^2\ge0\), mọi a, b, c
=> \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\), mọi a, b, c
Mà theo bài ra \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)
Vì thế chỉ có thể xảy ra là dấu bằng
Nghĩa là: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)
<=> 2a+1=0, b+3=0, 5c-6=0
<=> a=-1/2, b=-3, c=6/5
Tìm a,b,c: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)
HELP ME!
\(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\) (1)
Do \(\left(2a+1\right)^2\ge0\)
\(\left(b+3\right)^4\ge0\)
\(\left(5c-6\right)^2\ge0\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
\(\left(1\right)\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)
\(\Rightarrow\left(2a+1\right)^2=0;\left(b+3\right)^4=0;\left(5c-6\right)^2=0\)
*) \(\left(2a+1\right)^2=0\)
\(\Rightarrow2a+1=0\)
\(2a=-1\)
\(a=-\dfrac{1}{2}\)
*) \(\left(b+3\right)^4=0\)
\(\Rightarrow b+3=0\)
\(b=-3\)
*) \(\left(5c-6\right)^2=0\)
\(\Rightarrow5c-6=0\)
\(5c=6\)
\(c=\dfrac{6}{5}\)
Vậy \(a=-\dfrac{1}{2};b=-3;c=\dfrac{6}{5}\)
Tìm a;b;c sao cho:
\(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)
Vì \(\left(2a+1\right)^2\ge0;\left(b+3\right)^4\ge0;\left(5c-6\right)^4\ge0\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\ge0\)
Mà theo đề bài: \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2\le0\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2=0\)
\(\Rightarrow\begin{cases}\left(2a+1\right)^2=0\\\left(b+3\right)^4=0\\\left(5c-6\right)^2=0\end{cases}\)\(\Rightarrow\begin{cases}2a+1=0\\b+3=0\\5c-6=0\end{cases}\)\(\Rightarrow\begin{cases}2a=-1\\b=-3\\5c=6\end{cases}\)\(\Rightarrow\begin{cases}a=\frac{-1}{2}\\b=-3\\c=\frac{6}{5}\end{cases}\)
Vậy \(a=\frac{-1}{2};b=-3;c=\frac{6}{5}\)
Tìm các số a, b, c biết
a) (2a - 7)^2 + (b + 3)^4 + (5c + 6)^2 < 0
b)(a - 7)^2 + (3b + 2)^2 + (4c - 5)^6 < 0
c)(12a - 5)^2 - (8b + 1)^4 + (c+ 19)^6 < 0
Tìm a,b,c biết
a, \(\left(2a+1\right)^2+\left(b+3\right)^4+\left(5c-6\right)^2< =0\)
b,\(\left(a-7\right)^2+\left(3b+2\right)^2+\left(4c-5\right)^6< =0\)
c,\(\left(12a-9\right)^2+\left(8b+1\right)^4+\left(c+19\right)^6< =0\)
d,\(\left(7b-3\right)^4+\left(21a-6\right)^4+\left(18c+5\right)^6< =0\)
a, Ta thấy : \(\left\{{}\begin{matrix}\left(2a+1\right)^2\ge0\\\left(b+3\right)^2\ge0\\\left(5c-6\right)^2\ge0\end{matrix}\right.\)\(\forall a,b,c\in R\)
\(\Rightarrow\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\ge0\forall a,b,c\in R\)
Mà \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2\le0\)
Nên trường hợp chỉ xảy ra là : \(\left(2a+1\right)^2+\left(b+3\right)^2+\left(5c-6\right)^2=0\)
- Dấu " = " xảy ra \(\left\{{}\begin{matrix}2a+1=0\\b+3=0\\5c-6=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=-\dfrac{1}{2}\\b=-3\\c=\dfrac{6}{5}\end{matrix}\right.\)
Vậy ...
b,c,d tương tự câu a nha chỉ cần thay số vào là ra ;-;
Thu gọn các biểu thức
a. A=(-1).(-1)^2.(-1)^3....(-1)^100
b. B=(2a-3b+5c)-(a-c-b)-(-2b+a-4c)
c. C=1-3^2+3^4-3^6+....+3^96-3^98+3^100