Những câu hỏi liên quan
LD
Xem chi tiết
NT
22 tháng 7 2021 lúc 23:46

Bạn ghi lại đề đi, khó nhìn quá

Bình luận (0)
TL
Xem chi tiết
PK
Xem chi tiết
NT
Xem chi tiết
MS
25 tháng 10 2018 lúc 18:01

Nesbit:v dài

Bình luận (0)
MS
25 tháng 10 2018 lúc 18:01

Nham ko phai Nesbit, Cauchy-Schwarz ra luon

Bình luận (1)
NL
Xem chi tiết
AH
21 tháng 5 2021 lúc 23:19

Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.

1.

Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$. 

Khi đó: $a+b+c=0\Rightarrow a+b=-c$

$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$

$=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$

$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$

$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$

$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$

Ta có đpcm.

Bình luận (2)
AH
21 tháng 5 2021 lúc 23:22

Bài 2:

Áp dụng kết quả của bài 1:

Mẫu:

$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$

Tử: 

Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$

$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$

$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$

$=3(x-y)(y-z)(z-x)(2)$

Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)

 

Bình luận (0)
AH
21 tháng 5 2021 lúc 23:23

Bài 3:

\(ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{2^2-2}{2}=1\)

Do đó:

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ac}{abc}=\frac{1}{abc}\)

Ta có đpcm.

Bình luận (0)
TX
Xem chi tiết
DN
6 tháng 8 2017 lúc 9:28

a,Từ giả thiết ta có

(x2+y2+z2)(x+y+z)2+(xy+yz+zx)2

=(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

Đặt x2+y2+z2=a

xy+yz+zx=b

=>(x2+y2+z2)(x2+y2+z2+2xy+2yz+2zx)+(xy+yz+zx)2

=a(a+2b)+b2

=a2+2ab+b2

=(a+b)2

=(x2+y2+z2+xy+yz+zx)2

câu b hơi dài mình gửi sau nhé

Bình luận (0)
DN
6 tháng 8 2017 lúc 9:49

Ta có: 2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4

Gọi x^4+y^4+z^4=a

x^2+y^2+z^2=b

x+y+z=c

=>2(x^4+y^4+z^4)-(x^2+y^2+z^2)^2-2(x^2+y^2+z^2)(x+y+z)^2+(x+y+z)^4=2a-b^2-2bc^2+c^4

=2a-2b^2+b^2-2bc^2+c^4

=2(a-b^2)+(b+c^2)^2

Ta có

2(a-b2)=2[x^4+y^4+z^4-(x^2+y^2+z^2)2]

=2[x^4+y^4+z^4-x^4-y^4-z^4-2x2y2-2y2z2-2z2x2]

=2.(-2)(x2y2+y2z2+z2x2)

=-4(x2y2+y2z2+z2x2)

Lại có

(b+c^2)^2

=[(x^2+y^2+z^2)+(x+y+z)2]2

=[(x^2+y^2+z^2)-(x^2+y^2+z^2)-2(xy+yz+zx)]2

=4(xy+yz+zx)2

=>2(a-b^2)+(b+c^2)^2

=-4(x2y2+y2z2+z2x2)+4(xy+yz+zx)2

=8xyz(x+y+z)

Bình luận (1)
TT
16 tháng 12 2018 lúc 12:50

cauu a cua bn Đen đủi .....lm sai r

Bình luận (0)
DT
Xem chi tiết
TV
Xem chi tiết
TV
Xem chi tiết