Rút gọn phân thức sau :
\(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\)
rút gọn phân thức
\(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\)
Rút gọn phân thức :
\(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\)
Ta có : \(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\) \(=\frac{\left(a^4-2a^2+1\right)-a^2}{\left(a^4-a^3-a^2\right)+\left(a^3-a^2-a\right)+\left(a^2-a-1\right)}\)
\(=\frac{\left(a^2-1\right)^2-a^2}{a^2\left(a^2-a-1\right)+a\left(a^2-a-1\right)+\left(a^2-a-1\right)}\)
\(=\frac{\left(a^2-a-1\right)\left(a^2+a-1\right)}{\left(a^2-a-1\right)\left(a^2+a+1\right)}\)
\(=\frac{a^2+a-1}{a^2+a+1}\)
Rút gọn biểu thức sau với x=\(\frac{a}{3a+2}\)
A=\(\frac{x+3a}{2-x}+\frac{x-3a}{2+x}+\frac{2a}{4-x^2}+a\)
1,rút gọ các phân thức sau
a,\(\frac{2a^2+b^5}{3a^2b^2}\)
b\(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\)
2, rút gọn
A=\(\frac{a^2+ax+ab+bx}{a^2+ã-ab-bx}\)
1, b) \(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\) = \(\frac{\left(x^2+2xy+y^2\right)-4}{\left(x^2+4x+4\right)-y^2}\) =\(\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)= \(\frac{\left(x+y+2\right)\left(x+y-2\right)}{\left(x+2+y\right)\left(x+2-y\right)}\) = \(\frac{x+y-2}{x+2-y}\)
2, A= \(\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\) = \(\frac{\left(a^2+ax\right)+\left(ab+bx\right)}{\left(a^2+ax\right)-\left(ab+bx\right)}\) = \(\frac{a\left(a+x\right)+b\left(a+x\right)}{a\left(a+x\right)-b\left(a+x\right)}\)= \(\frac{\left(a+x\right)\left(a+b\right)}{\left(a+x\right)\left(a-b\right)}\)= \(\frac{a+b}{a-b}\)
1)Rút gọn các phân thức sau
a)N = \(\frac{a^4-5a^2+4}{a^4-a^2+4a-4}\)
b)M = \(\frac{a^3-3a+2}{2a^3-7a^2+8a-3}\)
c)P= \(\frac{a^2-2ab+b^2-c^2}{a^2+b^2+c^2-2ab-2bc+2ac}\)
a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)
\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)
\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)
\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)
\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)
\(=\left(a^2-a+2\right)\left(a+2\right)\)
\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)
em chịu
Rút gọn biểu thức sau với \(x=\dfrac{a}{3a+2}\):
\(A=\dfrac{x+3a}{2-x}+\dfrac{x-3a}{2+x}-\dfrac{2a}{4-x^2}+a\)
Rút gọn biểu thức A = \(a-\left(\frac{\left(16-a\right).a}{a^2-4}+\frac{3+2a}{2-a}+\frac{2-3a}{a+2}\right):\frac{a-1}{a^3+4a^2+4a}\)
Rút gọn các biểu thức sau:
\(A=\dfrac{a^2-1}{3}\sqrt{\dfrac{9}{\left(1-a\right)^2}}\) với a < 1
\(B=\sqrt{\left(3a-5\right)^2}-2a+4\) với a < \(\dfrac{1}{2}\)
\(C=4a-3-\sqrt{\left(2a-1\right)^2}\) với a < 2
\(D=\dfrac{a-2}{4}\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\) với a < 2
a) Ta có: \(A=\dfrac{a^2-1}{3}\cdot\sqrt{\dfrac{9}{\left(1-a\right)^2}}\)
\(=\dfrac{\left(a+1\right)\cdot\left(a-1\right)}{3}\cdot\dfrac{3}{\left|1-a\right|}\)
\(=\dfrac{\left(a+1\right)\left(a-1\right)}{1-a}\)
=-a-1
b) Ta có: \(B=\sqrt{\left(3a-5\right)^2}-2a+4\)
\(=\left|3a-5\right|-2a+4\)
\(=5-3a-2a+4\)
=9-5a
c) Ta có: \(C=4a-3-\sqrt{\left(2a-1\right)^2}\)
\(=4a-3-\left|2a-1\right|\)
\(=4a-3-2a+1\)
\(=2a-2\)
d) Ta có: \(D=\dfrac{a-2}{4}\cdot\sqrt{\dfrac{16a^4}{\left(a-2\right)^2}}\)
\(=\dfrac{a-2}{4}\cdot\dfrac{4a^2}{\left|a-2\right|}\)
\(=\dfrac{a^2\left(a-2\right)}{-\left(a-2\right)}\)
\(=-a^2\)
Rút gọn biểu thức sau với x=a/3a+2
A= (x+3a/2-x)+(x-3a/2+x)-(2a/4-x^2)+a
(Đề 3)