Tìm gtnn của bt:
2x^2+4x+15
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cm bt luôn âm với mọi x:
-x^2+2x-7
-5x^2+20x-49
Tìm gtnn của bt:
X^2+8
2x^2+4x+15
TÌM GIÁ TRỊ NHỎ NHẤT CỦA BIỂU THỨC:
1) \(x^2+8\)
Gọi biểu thức trên là A.
Nhận xét; \(x^2\ge0\forall x\)
\(\Rightarrow x^2+8\ge8\forall x\)
Vậy \(minA=8\) khi \(x^2=0\)\(\Rightarrow x=0\)
KL: Vậy \(minA=8\) khi \(x=0\)
2) \(2x^2+4x+15\)
\(\Rightarrow2x^2+4x+1+14\)
\(\Rightarrow\left(2x^2+1\right)^2+14\)
Gọi biểu thức trên là B.
Nhận xét: \(\left(2x^2+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x^2+1\right)^2+14\ge14\forall x\)
Vậy \(minB=14\) khi \(\left(2x^2+1\right)^2=0\)\(\Rightarrow2x^2+1=0\)\(\Rightarrow2x^2=1\)\(\Rightarrow x=\sqrt{\frac{1}{2}}\)
KL: Vậy \(minB=14\) khi \(x=\sqrt{\frac{1}{2}}\)
Tìm giá trị nhỏ nhất của biểu thức bạn AKIWA MAIYA làm rồi .
Chứng minh biểu thức luôn âm với mọi x
a) \(-x^2+2x-7\)
\(=-\left(x^2-2x+7\right)\)
\(=-\left(x^2-2.x.1+1^2+7\right)\)
\(=-\left[\left(x-1\right)^2+7\right]\)
Vì \(-\left[\left(x-1\right)^2+7\right]< 0\)
=> Biểu thức trên nhận giá trị âm với mọi x .
b) Tương tự
Tìm gtnn của bt:
2x^2+4x+15
Ta có :
\(2x^2+4x+15=2\left(x^2+2x+\dfrac{15}{2}\right)=2\left(x^2+2.x.1+1^2+\dfrac{13}{2}\right)=2\left[\left(x+1\right)^2+\dfrac{13}{2}\right]=2\left(x+1\right)^2+13\)
Với mọi x ta có :
\(2\left(x+1\right)^2\ge0\)
\(\Leftrightarrow2\left(x+1\right)^2+13\ge13\)
Dấu "=" xảy ra khi :
\(\left(x+1\right)^2=0\Leftrightarrow x=-1\)
Vậy ...
tìm GTNN hoặc GTLN của bt:
P= 9x^2 +12x-5
Q= 2x2 +8xy +16x2 +4x-15
P= 9x^2 + 12x -5
= (3x)^2 + 2.3.2x + 4 -4 -5
=(9x^2 + 2.3.2x + 4) -9
= (3x+2)^2 -9
min p = -9 => (3x+2)^2 = 0
=> x= -2/3
max p = -9 => x= -2/3
1.Tìm GTNN của bt
a.x^2-2x-1
b.4x^2+4x-5
2.Tìm GTLN của bt:
a.2x-x^2-4
b.-x^2-4
BÀI 1:
\(a,x^2-2x-1\)
\(=x^2-2x+1-2\)
\(=\left(x-1\right)^2-2\)
Vì: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2-2\ge-2\forall x\)
Dấu = xảy ra khi : \(\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy: GTNN của bt là -2 tại x=1
\(b,4x^2+4x-5\)
\(=4x^2+4x+1-6\)
\(=\left(2x+1\right)^2-6\)
Vì: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2-6\ge-6\forall x\)
Dấu = xảy ra khi \(\left(2x+1\right)^2=0\Rightarrow x=-\frac{1}{2}\)
VậyGTNN của bt là -6 tại x=-1/2
BÀI 2:
\(a,2x-x^2-4\)
\(=-x^2+2x-4\)
\(=-x^2+2x-1-3\)
\(=-\left(x^2-2x+1\right)-3\)
\(=-\left(x-1\right)^2-3\)
Vì: \(-\left(x-1\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
Dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)
Vậy GTLN của bt là -3 tại x=1
b,mk chưa nghĩ ra,lúc nào mk nghĩ ra sẽ gửi lời giải cho bn
1)
a) Đặt \(A=x^2-2x+1\)
\(\Rightarrow A=x^2-2x-1=\left(x^2-2.x.1+1^2\right)-2=\left(x-1\right)^2-2\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow\left(x-1\right)^2-2\ge2\forall x\)
\(A=2\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(A_{min}=2\Leftrightarrow x=1\)
Câu b tương tự
2)
a) Đặt \(B=2x-x^2-4\)
\(B=2x-x^2-4=-\left(x^2-2x+1\right)-3=-\left(x-1\right)^2-3\)
Ta có: \(\left(x-1\right)^2\ge0\forall x\Rightarrow-\left(x-1\right)^2\le0\forall x\Rightarrow-\left(x-1\right)^2-3\le-3\forall x\)
\(B=-3\Leftrightarrow-\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy\(B_{max}=-3\Leftrightarrow x=1\)
b) Đặt \(C=-x^2-4\)
Ta có: \(x^2\ge0\forall x\Rightarrow-x^2\ge0\forall x\Rightarrow-x^2-4\le-4\forall x\)
\(C=-4\Leftrightarrow-x^2=0\Leftrightarrow x=0\)
Vậy \(C_{max}=-4\Leftrightarrow x=0\)
thôi bn tham khảo bài của bn kudo shinichi đi, bn ấy lm đúng rồi
Cm bt luôn âm với mọi x:
-x^2+2x-7
-5x^2+20x-49
Tìm gtnn của bt:
X^2+8
2x^2+4x+15
Bài 2:
a: \(A=x^2+8>=8\)
Dấu '=' xảy rakhi x=0
b: \(B=2\left(x^2+2x+\dfrac{15}{2}\right)\)
\(=2\left(x^2+2x+1+\dfrac{13}{2}\right)=2\left(x+1\right)^2+13>=13\)
Dấu '=' xảy ra khi x=-1
Tìm GTNN của bt sau : a) M = x^2 + 4x + 9 b) N = x^2 - 20x + 101 2) Tìm GTLN của bt sau : a) C = -y^2 + 6y - 15 B = -x^2 + 9x -12
Bài 1:
a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.
$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$
Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$
Bài 2:
a.
$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)
$\Rightarrow C\leq -6$
Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.
$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$
$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$
1) Tìm GTNN của bt sau : a) M = x^2 + 4x + 9 b) N = x^2 - 20x + 101 2) Tìm GTLN của bt sau : a) C = -y^2 + 6y - 15 B = -x^2 + 9x -12
1)
a) \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)
\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)
\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)
Dấu bằng xảy ra khi x + 2 = 0
x = -2
Vậy GTNN của M bằng 5 khi x = -2
b) \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)
\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)
\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)
Dấu bằng xảy ra khi x - 10 = 0
x = 10
Vậy GTNN của N bằng 1 khi x = 10
2)
a) \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)
\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)
\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)
Dấu bằng xảy ra khi y - 3 = 0
y = 3
Vậy GTLN của C bằng -6 khi y = 3
b) \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)
\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)
\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)
Dấu bằng xảy ra khi \(x-\frac{9}{2}=0\)
\(x=\frac{9}{2}\)
Vậy GTLN của B bằng \(\frac{33}{4}\)khi x = \(\frac{9}{2}\)
a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5
Vì : \(\left(x+2\right)^2\ge0\forall x\in R\)
Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)
Vậy Mmin = 5 khi x = -2
b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì \(\left(x-10\right)^2\ge0\forall x\in R\)
Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)
Vậy Nmin = 1 khi x = 10
Bài 2 :
a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6
Vì \(-\left(y-3\right)^2\le0\forall x\in R\)
Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)
Vậy Cmin = -6 khi y = 3
b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x + \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)
Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)
Nên : B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)
Vậy Bmin = \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)
Cm bt luôn âm với mọi x:
-x^2+2x-7
-5x^2+20x-49
2.tìm GTNN của bt:
X^2+8x
2x^2+4x+15
1.
a)
\(-x^2+2x-7\left(1\right)\\ \Leftrightarrow-\left(x^2-2x+7\right)\\ \Leftrightarrow-\left[\left(x^2-2x+1\right)+6\right]\\ \Leftrightarrow-\left[\left(x-1\right)^2+6\right]\le-6\forall x\)
=> BT (1) luôn âm với mọi x
b)
\(-5x^2+20x-49\left(2\right)\\ \Leftrightarrow-\left(5x^2-20x+49\right)\\ \Leftrightarrow-\left(x^2-4x+\dfrac{49}{5}\right)\Leftrightarrow-\left[\left(x^2-4x+4\right)+\dfrac{29}{5}\right]\Leftrightarrow-\left[\left(x-2\right)^2+\dfrac{29}{5}\right]\le\dfrac{29}{5}\forall x\)
=> BT (2) luôn âm với mọi x
Bài 1 :
\(-x^2+2x-7\)
\(=\left(-x^2+2x-1\right)-6\)
\(=-\left(x^2-2x+1\right)-6\)
\(=-\left(x-1\right)^2-6\)
Do \(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-6\le-6< 0\)
Vậy biểu thức luôn âm với mọi giá trị của x .
\(-5x^2+20x-49\)
\(=\left(-5x^2+20x-20\right)-29\)
\(=-5\left(x^2-4x+4\right)-29\)
\(=-5\left(x-2\right)^2-29\)
Do \(\left(x-2\right)^2\ge0\Rightarrow-5\left(x-2\right)^2\le0\Rightarrow-5\left(x-2\right)^2-29\le-29< 0\)
Vậy biểu thức luôn âm với mọi giá trị của x
Bài 2 :
\(x^2+8x=x^2+8x+16-16=\left(x+4\right)^2-16\ge-16\)
\(2x^2+4x+15=2x^2+4x+2+13=2\left(x+1\right)^2+13\ge13\)
tìm GTNN hoặc GTLN của bt:
P= 9x^2 +12x-5
Q= 2x2 +8xy +16x2 +4x-15
\(P=9x^2+12x-5\)
\(=9x^2+12x+4-9\)
\(=\left(3x+2\right)^2-9\ge-9\)
Dấu " = " khi \(\left(3x+2\right)^2=0\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(MIN_P=-9\) khi \(x=\dfrac{-2}{3}\)
b, sai đề