Những câu hỏi liên quan
NH
Xem chi tiết
NT
20 tháng 3 2023 lúc 22:32

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

BH=6^2/10=3,6cm

Bình luận (0)
PV
Xem chi tiết
NT
26 tháng 9 2021 lúc 14:03

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

Bình luận (0)
ND
Xem chi tiết
NT
2 tháng 3 2022 lúc 21:39

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có 

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{AB^2+AC^2}=20\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{12\cdot16}{20}=9.6\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=\dfrac{12^2}{20}=7.2\left(cm\right)\)

Bình luận (0)
TV
Xem chi tiết
CX
13 tháng 1 2022 lúc 15:39

TK

undefined

Bình luận (1)
HP
Xem chi tiết
NT
22 tháng 3 2021 lúc 19:55

a) Xét ΔHBA vuông tại H và ΔABC vuông tại A có

\(\widehat{B}\) chung

Do đó: ΔHBA\(\sim\)ΔABC(g-g)

Bình luận (0)
TV
Xem chi tiết
BG
26 tháng 8 2021 lúc 10:47

Bình luận (0)
BG
26 tháng 8 2021 lúc 10:47

Bình luận (0)
BG
26 tháng 8 2021 lúc 10:50

d) \(AC=\sqrt{BC^2-AB^2}=8\)

\(AH=\dfrac{AB.AC}{BC}=4,8\)

\(BH=\sqrt{AB^2-AH^2}=3,6\)

\(CH=BC-BH=6,4\)

Bình luận (0)
NN
Xem chi tiết
NA
1 tháng 8 2020 lúc 11:38

Sử dụng hệ thức lượng trong tam giác vuông thôi: 
AB*AC = AH*BC = 12*25 = 300 
AB^2 + AC^2 = BC^2 = 25^2 = 625 
giải hệ trên ta được : AB = 15, AC = 20 
AB^2 = BH*BC=> BH = AB^2/BC = 9 
AH^2 = BH*CH=> CH = AH^2/BH = 12^2/9 = 16 
NGOÀI RA HỆ PT TRÊN CÒN 1 NGHIỆM NỮA LÀ AB=20,AC=15 

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
NT
4 tháng 11 2021 lúc 22:30

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

Bình luận (0)
TA
Xem chi tiết
NT
25 tháng 10 2021 lúc 21:52

b: Xét ΔBAC vuông tại B có BH là đường cao

nên \(HA\cdot HC=BH^2\left(1\right)\)

Xét ΔBHC vuông tại H có HE là đường cao

nên \(BE\cdot BC=BH^2\left(2\right)\)

Từ (1) và (2) suy ra \(HA\cdot HC=BE\cdot BC\)

Bình luận (1)