\(\frac{2015\cdot2017}{2016\cdot2018}va\frac{2016\cdot2017}{2014\cdot2015}\)
TÍNH : \(\frac{1\cdot2016+2\cdot2015+...+2015\cdot2+2016\cdot1}{1\cdot2+2\cdot3+...+2016\cdot2017}\)
Giải họ mik bài này với mn:
\(\frac{2015+2016\cdot2017}{2017\cdot2018-2019}\)
\(\frac{2015+2016.2017}{2017.2018-2019}\)
\(=\frac{2015+2016}{2018-2019}\)
\(=\frac{4031}{-1}\)
\(=-4031\)
(Mik làm bừa thôi bạn, sai đừng k sai nha :( Tội mik lắm)
so sánh A và B
A= \(\frac{2015\cdot2016-1}{2015\cdot2016}\) B= \(\frac{2016\cdot2017-1}{2016\cdot2017}\)
A = \(\frac{2015.2016-1}{2015.2016}\)= \(\frac{2015.2016}{2015.2016}\)\(-\)\(\frac{1}{2015.2016}\)= 1 \(-\)\(\frac{1}{2015.2016}\)
B = \(\frac{2016.2017-1}{2016.2017}\)= \(\frac{2016.2017}{2016.2017}\)\(-\)\(\frac{1}{2016.2017}\)= 1 \(-\)\(\frac{1}{2016.2017}\)
Vì \(\frac{1}{2015.2016}\)> \(\frac{1}{2016.2017}\)
=> 1 \(-\)\(\frac{1}{2015.2016}\)< \(1-\)\(\frac{1}{2016.2017}\)
=> A < B
Tính giá trị biểu thức \(P=\frac{\left(2016^2\cdot2026+31\cdot2017-1\right)\left(2016\cdot2021+4\right)}{2017\cdot2018\cdot2019\cdot2020\cdot2021}\)
so sánh
\(\frac{64}{85}va\frac{73}{81}\)
\(\frac{67}{77}va\frac{73}{83}\)
\(\frac{11}{32}va\frac{16}{49}\)
\(\frac{2016\cdot2017-1}{216\cdot2017}va\frac{2015\cdot2016-1}{2015\cdot2016}\)
giúp mk nha cần gấp
ai nhanh nhất mk tk cho
So sánh \(\dfrac{2016\cdot2018}{1999+2016\cdot2017}\) với 1
Giải.
Ta có : \(\dfrac{2016.2018}{1999+2016.2017}=\dfrac{2016\left(2017+1\right)}{1999+2016.2017}\)
\(=\dfrac{2016.2017+2016}{1999+2016.2017}\)
Do \(2016>1999\)
\(\Rightarrow2016.2017+2016>1999+2016.2017\)
\(\dfrac{2016.2017+2016}{1999+2016.2017}>1\)
Vậy...
tik mik nha !!!
Ta có:
\(\dfrac{2016.2018}{1999+2016.2017}\)= \(\dfrac{2016\left(1+2017\right)}{1999+2016.2017}\)= \(\dfrac{2016+2016.2017}{1999+2016.2017}\)
Vì \(2016>1999\) nên \(2016+2016.2017>1999+2016.2017\)
Do đó, \(\dfrac{2016+2016.2017}{1999+2016.2017}\) > 1
Vậy \(\dfrac{2016.2018}{1999+2016.2017}\) > 1
Tính nhanh :
a) \(\frac{2015\cdot2017-1}{2014+2015\cdot2016}\)
b) \(\frac{1}{1\cdot5}+\frac{1}{5\cdot9}+...+\frac{1}{2011\cdot2015}\)
c)\(\frac{12}{35}+\frac{1212}{3535}+\frac{121212}{353535}+\frac{12121212}{35353535}\)
a,\(\frac{2015.2016+2015-1}{2014+2015.2016}=\frac{2015.2016+2014}{2014+2015.2016}=1\)\(1\)
b,\(=1-\frac{1}{5}+\frac{1}{5}...-\frac{1}{2011}+\frac{1}{2011}-\frac{1}{2015}=1-\frac{1}{2015}=\frac{2014}{2015}\)
c,\(=\frac{12}{35}+\frac{12}{35}+\frac{12}{35}+\frac{12}{35}=\frac{12}{35}.4=\frac{48}{35}\)
b>=1-1/5+1/5-1/9+...+1/2011-1/2015
=1-1/2015
=2014/2015
c>=12/35+12/35+12/35+12/35
=12/35x4
=48/35
tính :P=\(\dfrac{\left(2016^2\cdot2026+31\cdot2017-1\right)\left(2016\cdot2021+4\right)}{2017\cdot2018\cdot2019\cdot2020\cdot2021}\)
Đặt \(2016=a\) biểu thức trên trở thành:
\(P=\dfrac{\left(a^2\left(a+10\right)+31\left(a+1\right)-1\right)\left(a\left(a+5\right)+4\right)}{\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)}=\dfrac{A}{B}\)
Với \(B=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)\)
Ta có: \(a^2\left(a+10\right)+31\left(a+1\right)-1=a^3+10a^2+31a+30\)
\(=a^3+5a^2+6a+5a^2+25a+30=a\left(a^2+5a+6\right)+5\left(a^2+5a+6\right)\)
\(=\left(a+5\right)\left(a^2+5a+6\right)=\left(a+5\right)\left(a^2+2a+3a+6\right)\)
\(=\left(a+5\right)\left(a+2\right)\left(a+3\right)\)
Và \(a\left(a+5\right)+4=a^2+5a+4=a^2+a+4a+4=\left(a+1\right)\left(a+4\right)\)
\(\Rightarrow A=\left(a+1\right)\left(a+2\right)\left(a+3\right)\left(a+4\right)\left(a+5\right)=B\)
\(\Rightarrow P=\dfrac{A}{B}=1\)
Chứng minh \(\frac{A}{B}\) là số nguyên với :
\(A=\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}+\frac{1}{2017\cdot2018}\)
\(B=\frac{1}{1010\cdot2018}+\frac{1}{1011\cdot2017}+...+\frac{1}{2018\cdot1010}\)
Đây thưa anh !!Câu hỏi của Lê Chí Cường - Toán lớp 8 | Học trực tuyến
Bạn đưa lên câu hỏi online ở đâu vậy dạy mình cách với ạ bạn