tìm x,y biết x/3=y/5 và x+y= 72
tìm x,y x/9=y/15 và x2 -y2 = -16
Tìm x y z biết biết
x/y=17/3,x+y=-60
2)x/19=y/21,2x-y=34
3)x2/9=y2/16,x2+y2=100
4)x/y=10/9,y/z=3/4 x-y+z=78
5)x/y=9/7,9/7=7/3x-y+z=-15
các bạn nhớ làm giúp mình mình đang cần gấp
1) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{y}=\frac{17}{3}\) => \(\frac{x}{17}=\frac{y}{3}=\frac{x+y}{17+3}=\frac{-60}{20}=-3\)
=> \(\hept{\begin{cases}\frac{x}{17}=-3\\\frac{y}{3}=-3\end{cases}}\) => \(\hept{\begin{cases}x=-51\\y=-9\end{cases}}\)
Vậy ....
2) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{19}=\frac{y}{21}\)=> \(\frac{2x}{38}=\frac{y}{21}=\frac{2x-y}{38-21}=\frac{34}{17}=2\)
=> \(\hept{\begin{cases}\frac{x}{19}=2\\\frac{y}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=38\\y=42\end{cases}}\)
vậy ...
3) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=36\\y^2=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
4) Ta có: \(\frac{x}{y}=\frac{10}{9}\) => \(\frac{x}{10}=\frac{y}{9}\)
\(\frac{y}{z}=\frac{3}{4}\) => \(\frac{y}{3}=\frac{z}{4}\) => \(\frac{y}{9}=\frac{z}{12}\)
=> \(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{9}=\frac{z}{12}=\frac{x-y+z}{10-9+12}=\frac{78}{13}=6\)
=> \(\hept{\begin{cases}\frac{x}{10}=6\\\frac{y}{9}=6\\\frac{z}{12}=6\end{cases}}\) => \(\hept{\begin{cases}x=60\\y=54\\z=72\end{cases}}\)
Vậy ...
Tìm x và y, biết: a) \(\dfrac{x}{y} = \dfrac{5}{3}\) và x+y = 16; b) \(\dfrac{x}{y} = \dfrac{9}{4}\) và x – y = -15
a) Vì \(\dfrac{x}{y} = \dfrac{5}{3} \Rightarrow \dfrac{x}{5} = \dfrac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{5} = \dfrac{y}{3} = \dfrac{{x + y}}{{5 + 3}} = \dfrac{{16}}{8} = 2\\ \Rightarrow x = 2.5 = 10\\y = 2.3 = 6\end{array}\)
Vậy x=10, y=6
b) Vì \(\dfrac{x}{y} = \dfrac{9}{4} \Rightarrow \dfrac{x}{9} = \dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\begin{array}{l}\dfrac{x}{9} = \dfrac{y}{4} = \dfrac{{x - y}}{{9 - 4}} = \dfrac{{ - 15}}{5} = - 3\\ \Rightarrow x = ( - 3).9 = - 27\\y = ( - 3).4 = - 12\end{array}\)
Vậy x = -27, y = -12.
Cho x, y là hai đại lượng tỉ lệ thuận với nhau. Gọi x1, 2 là hai giá trị của x và y1, y2 là hai giá trị tương ứng của y. Biết rằng x1 + x2 = -3 và y1 + y2 = 15
a) Tìm hệ số tỉ lệ của y đối với x
b) Tính các giá trị của x khi y = -2 và y = -9
a: x và y tỉ lệ thuận với nhau
=>\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{y_1}{x_1}=\dfrac{y_2}{x_2}=\dfrac{y_1+y_2}{x_1+x_2}=\dfrac{15}{-3}=-5\)
=>y=-5x
b: y=-5x
=>\(x=-\dfrac{1}{5}y\)
Thay y=-2 vào \(x=-\dfrac{1}{5}y\), ta được:
\(x=-\dfrac{1}{5}\cdot\left(-2\right)=\dfrac{2}{5}\)
Thay y=-9 vào x=-1/5y, ta được:
\(x=-\dfrac{1}{5}\cdot\left(-9\right)=\dfrac{9}{5}\)
Tìm 2 số x,y biết
a)x/y=3/5 và 2x+3y=24
x/9=y/15 và x^2-y^2=-16
I. Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
1/ Tìm x,y biết:
a/ \(\dfrac{x}{2}\) = \(\dfrac{y}{5}\) và x+y=-21
b/ 7x = 3y và x-y=16
c/ \(\dfrac{x}{y}\) = \(\dfrac{5}{9}\) và 3x+2x=66
d/ \(\dfrac{x}{15}\) = \(\dfrac{y}{7}\) và x-2y=16
e/ \(\dfrac{x}{5}\) = \(\dfrac{y}{2}\) và x × y = 1000
2/ Tìm x,y,z biết
\(\dfrac{x}{13}\) = \(\dfrac{y}{7}\) = \(\dfrac{z}{5}\) và x-y-z=6
a. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{-21}{7}=-3$
$\Rightarrow x=2(-3)=-6; y=5(-3)=-15$
b. Áp dụng tính chất dãy tỉ số bằng nhau:
$7x=3y=\frac{x}{\frac{1}{7}}=\frac{y}{\frac{1}{3}}=\frac{x-y}{\frac{1}{7}-\frac{1}{3}}=\frac{16}{\frac{-4}{21}}=-84$
$\Rightarrow x=(-84):7=-12; y=-84:3=-28$
c. $\frac{x}{y}=\frac{5}{9}\Rightarrow \frac{x}{5}=\frac{y}{9}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{5}=\frac{y}{9}=\frac{3x}{15}=\frac{2y}{18}=\frac{3x+2y}{15+18}=\frac{66}{33}=2$
$\Rightarrow x=2.5=10; y=9.2=18$
d. Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{15}=\frac{y}{7}=\frac{2y}{14}=\frac{x-2y}{15-14}=\frac{16}{1}=16$
$\Rightarrow x=16.15=240; y=7.16=112$
e.
Đặt $\frac{x}{5}=\frac{y}{2}=k\Rightarrow x=5k ; y=2k$
Khi đó: $xy=5k.2k=10k^2=1000\Rightarrow k^2=100\Rightarrow k=\pm 10$
Với $k=10$ thì $x=5k=50; y=2k=20$
Với $k=-10$ thì $x=5k=-50; y=2k=-20$
Bài 2:
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{13}-\frac{y}{7}-\frac{z}{5}=\frac{x-y-z}{13-7-5}=\frac{6}{1}=6$
$\Rightarrow x=13.6=78; y=7.6=42; z=5.6=30$
1.Tìm x,y,z biết :
a)2x/3 = 3y/4 =4z/5 và x+y+z = 49
b)x/5 = y/3= và x2 - y2 =4
c)x/y+z+1 =y/z+x+1 =z/x+y-2= x+y+z
Giúp mik vs ạ , cảm ơn mn
a) Ta có: \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\)
nên \(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{2x}{3}=12\\\dfrac{3y}{4}=12\\\dfrac{4z}{5}=12\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=36\\3y=48\\4z=60\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=20\end{matrix}\right.\)
Vậy: (x,y,z)=(18;16;20)
b) Đặt \(\dfrac{x}{5}=\dfrac{y}{3}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k\\y=3k\end{matrix}\right.\)
Ta có: \(x^2-y^2=4\)
\(\Leftrightarrow\left(5k\right)^2-\left(3k\right)^2=4\)
\(\Leftrightarrow16k^2=4\)
\(\Leftrightarrow k\in\left\{\dfrac{1}{2};-\dfrac{1}{2}\right\}\)
Trường hợp 1: \(k=\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{1}{2}=\dfrac{5}{2}\\y=3k=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Trường hợp 2: \(k=-\dfrac{1}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=5k=5\cdot\dfrac{-1}{2}=\dfrac{-5}{2}\\y=3k=3\cdot\dfrac{-1}{2}=\dfrac{-3}{2}\end{matrix}\right.\)
Vậy: \(\left(x,y\right)\in\left\{\left(\dfrac{5}{2};\dfrac{3}{2}\right);\left(-\dfrac{5}{2};-\dfrac{3}{2}\right)\right\}\)
a)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)
Suy ra :
\(x=\dfrac{12.3}{2}=18\\ y=\dfrac{12.4}{3}=16\\ z=\dfrac{12.5}{4}=15\)
b)
\(x=\dfrac{y}{3}.5=\dfrac{5y}{3}\\ x^2-y^2=4\\ \Leftrightarrow\left(\dfrac{5y}{3}\right)^2-y^2=4\\ \Leftrightarrow\dfrac{16y^2}{9}=4\Leftrightarrow y=\pm\dfrac{3}{2} \)
Với $y = \dfrac{3}{2}$ thì $x = \dfrac{5}{2}$
Với $y = \dfrac{-3}{2}$ thì $x = \dfrac{-5}{2}$
c)
\(\dfrac{x}{y+z+1}=\dfrac{y}{z+x+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2x+2y+2z}=\dfrac{1}{2}\)
Suy ra :
\(2x=y+z+1\Leftrightarrow y+z=2x-1\)
Mặt khác :
\(x+y+z=\dfrac{1}{2}\Leftrightarrow x+2x-1=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{2}\)
\(2y=x+z+1=z+\dfrac{3}{2}\)
Mà \(y+z=0\Leftrightarrow z=-y\)
nên suy ra: \(y=\dfrac{1}{2};z=-\dfrac{1}{2}\)
a)cho x+y=3 và x2+y2=5.Tính x3+y3
b)x-y=5 và x2+y2=15.Tính x3-y3
a) Ta thấy \(xy=\dfrac{\left(x+y\right)^2-\left(x^2+y^2\right)}{2}=\dfrac{3^2-5}{2}=2\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\) \(=3\left(5-2\right)=9\)
b) Ta thấy \(xy=\dfrac{-\left(x-y\right)^2+\left(x^2+y^2\right)}{2}=\dfrac{15-5^2}{2}=-5\)
\(\Rightarrow x^3-y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\) \(=5\left(15-5\right)=50\)
Tính giá trị biểu thức:
a) M = t(10 - 4t) - t 2 (2t - 5) – 2t + 5 tại t = 5 2 ;
b) N = x 2 (y - 1) - 5x(1 - y) tại x = -20 và y = 1001;
c) P = y 2 ( x 2 + y - 1) - m x 2 - my+m tại x = 9 và y = -80;
d) Q = x ( x - y ) 2 -y ( x - y ) 2 + x y 2 - x 2 y tại x - y = 7 và xy = 9.
a) Kết quả M = 0. Chú ý: nhân tử chung là 2f - 5 = 0.
b) Kết quả N = 300000.
c) Kết quả p = 0. Chú ý: nhân tử x 2 + y -1 = 0.
d) Kết quả Q = 280. Chú ý: Q = (x - y)[ ( x - y ) 2 - xy].
Bài 1: Tìm x và y
a) x/4 = y/-5 và -3x + 2y = 55
b) x/y = -7/4 và 4x - 5y = 72
c) x/ -3 = y/8 và x2 - y2 = -44/5
d) 3x3 + y3 = 64/9
a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{-5}=\dfrac{-3x+2y}{-12-10}=\dfrac{55}{-22}=\dfrac{-5}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{-20}{2}=-10\\y=\dfrac{25}{2}\end{matrix}\right.\)
b: Ta có: \(\dfrac{x}{y}=\dfrac{-7}{4}\)
nên \(\dfrac{x}{-7}=\dfrac{y}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{-7}=\dfrac{y}{4}=\dfrac{4x-5y}{-28-20}=\dfrac{72}{-48}=\dfrac{-3}{2}\)
Do đó: \(\left\{{}\begin{matrix}x=\dfrac{21}{2}\\y=\dfrac{-12}{2}=-6\end{matrix}\right.\)
c) \(\dfrac{x}{-3}=\dfrac{y}{8}\)
⇒\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{-9}=\dfrac{y^2}{64}=-\dfrac{44}{\dfrac{5}{-9+64}}=-\dfrac{44}{\dfrac{5}{55}}=-484\)