Những câu hỏi liên quan
H24
Xem chi tiết
H24
17 tháng 7 2018 lúc 17:25

\(A=\frac{x-1}{x+2}-\frac{x+2}{x-2}-\frac{x^2+12}{4-x^2}\)                    ĐKXĐ: \(x\ne\pm2\)

\(=\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{\left(x+2\right)^2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2+12}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x^2-2x-x+2-x^2-4x-4+x^2+12}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-7x+10}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2-2x-5x+10}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x\left(x-2\right)-5\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{\left(x-5\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x-5}{x+2}\)

Bình luận (0)
H24
Xem chi tiết
H24
7 tháng 8 2023 lúc 20:30

\(Q=\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\left(dk:x\ge0,x\ne4\right)\\ =\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{4-x}\\ =\dfrac{-3\sqrt{x}+6}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\\ =\dfrac{-3\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\\ =\dfrac{3}{\sqrt{x}+2}\)

\(b,Q=\dfrac{6}{5}\Leftrightarrow\dfrac{3}{\sqrt{x}+2}=\dfrac{6}{5}\Rightarrow15-6\left(\sqrt{x}+2\right)=0\Rightarrow15-6\sqrt{x}-12=0\)

\(\Rightarrow-6\sqrt{x}=-3\Rightarrow\sqrt{x}=\dfrac{1}{2}\Rightarrow x=\dfrac{1}{4}\left(tm\right)\)

Vậy \(x=\dfrac{1}{4}\)thỏa mãn đề bài.

Bình luận (0)
TB
Xem chi tiết
NA
5 tháng 8 2016 lúc 8:56

Hỏi đáp Toán

Bình luận (0)
NJ
5 tháng 8 2016 lúc 13:24

\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2}{x^2-4}\)
\(ĐKXĐ:x\ne\pm2\)
\(a,A=\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x-2\right)\left(x+2\right)}+\frac{x^2}{\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x+2+x-2+x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{2x+x^2}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(2+x\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x}{x-2}\)
\(b,A=\frac{x}{x-2}\)
\(=\frac{x-2+2}{x-2}\)
\(=\frac{x-2}{x-2}+\frac{2}{x-2}\)
\(=1+\frac{2}{x-2}\)
\(\text{Để A có giá trị nguyên thì:2⋮ x-2}\)
 \(\text{hay }x-2\inƯ\left(2\right)=\left\{-1;1;-2;2\right\}\)
\(\Rightarrow x\in\left\{1;3;0;4\right\}\left(tm\right)\)
\(\text{Vậy }x\in\left\{1;3;0;4\right\}\) \(\text{thì A có giá trị nguyên.}\)

 

Bình luận (0)
IM
5 tháng 8 2016 lúc 8:48

\(A=\frac{\left(x+2\right)+\left(x-2\right)+1}{\left(x+2\right)\left(x-2\right)}+\frac{x^2}{x^2-4}\)

\(A=\frac{2x+1}{x^2-4}+\frac{x^2}{x^2-4}\)

\(A=\frac{x^2+2.x.1+1^2}{x^2-4}\)

\(A=\frac{\left(x+1\right)^2}{x^2-4}\)

Bình luận (0)
AH
Xem chi tiết

\(1,ĐK:x\ne0;x\ne\pm6\)

\(A=\left[\frac{6x+1}{x\left(x-6\right)}+\frac{6x-1}{x\left(x+6\right)}\right].\frac{\left(x+6\right)\left(x-6\right)}{12\left(x^2+1\right)}\)

\(=\frac{6x^2+36x+x+6+6x^2-36x-x+6}{x}.\frac{1}{12\left(x^2+1\right)}\)

\(=\frac{12\left(x^2+1\right)}{x}.\frac{1}{12\left(x^2+1\right)}=\frac{1}{x}\)

\(2,A=\frac{1}{x}=\frac{1}{\frac{1}{\sqrt{9+4\sqrt{5}}}}=\sqrt{9+4\sqrt{5}}\)

Bình luận (0)
PH
12 tháng 2 2020 lúc 21:38

Cho tam giác ABC vuông tại B có góc B1=B; Â=60o, kẻ BH vuông góc với AC (H thuộc AC). Qua B kẻ đường thẳng d song song với AC.

a) Tính góc ABH.

b) Chứng minh đường thẳng d vuông góc với BH.

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
H9
5 tháng 8 2023 lúc 9:22

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\) (ĐK: \(x>1\))

\(A=\left(\dfrac{2}{\sqrt{x-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\)

\(A=\dfrac{4}{x-1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{2}-\sqrt{x^2-1}\)

\(A=2\left(x+1\right)-\sqrt{\left(x+1\right)\left(x-1\right)}\)

\(A=\sqrt{x+1}\left(2\sqrt{x+1}-\sqrt{x-1}\right)\)

Bình luận (0)
HV
Xem chi tiết
HM
5 tháng 8 2023 lúc 12:03

\(A=\left(\dfrac{1}{\sqrt{x-1}}+\dfrac{1}{\sqrt{x+1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\left(\dfrac{\sqrt{x+1}+\sqrt{x-1}}{\sqrt{x^2-1}}\right)^2\cdot\dfrac{x^2-1}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{\left(\sqrt{x+1}+\sqrt{x-1}\right)^2}{2}-\sqrt{x^2-1}\\ \Rightarrow A=\dfrac{2x+2\sqrt{x^2-1}-2\sqrt{x^2-1}}{2}\\ \Rightarrow A=x\)

Bình luận (0)
PA
Xem chi tiết
NQ
26 tháng 11 2017 lúc 21:00

M = 1/(x+1).(x+2) + 1/(x+2).(x+3) + 1/(x+3).(x+4) + 1/(x+4).(x+5) + 1/x+5

    = 1/x+1 - 1/x+2 + 1/x+2 - 1/x+3 + 1/x+3 - 1/x+4 + 1/x+4 - 1/x+5 + 1/x+5 = 1/x+1

k mk nha

Bình luận (0)
LD
Xem chi tiết
NT
30 tháng 1 2022 lúc 0:26

\(A=\left(\dfrac{1}{x-2}+\dfrac{2x}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right)\cdot\dfrac{2-x}{x}\)

\(=\dfrac{x+2+2x+x-2}{-\left(2-x\right)\left(x+2\right)}\cdot\dfrac{2-x}{x}\)

\(=\dfrac{4x}{-\left(x+2\right)\cdot x}=\dfrac{-4}{x+2}\)

Bình luận (0)
NQ
Xem chi tiết
BV
9 tháng 11 2017 lúc 9:40

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right).\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(=\left(\frac{\left(x^2-1\right)\left(x^2+1\right)-\left(x^4-x^2+1\right)}{\left(x^4-x^2+1\right)\left(x^2+1\right)}\right).\left(x^4+\frac{\left(1+x^2\right)\left(1-x^2\right)}{1+x^2}\right)\)
\(=\frac{x^4-1-x^4+x^2-1}{\left(x^2+1\right)\left(x^4-x^2+1\right)}\left(x^4+1-x^2\right)\)
\(=\frac{x^2-2}{x^2+1}\).

Bình luận (0)