Những câu hỏi liên quan
DH
Xem chi tiết
H24
28 tháng 8 2017 lúc 14:35

Kẻ OE,OF,OG,OH lần lượt là đg cao của các tam giác vuông DOC,AOB,AOD,BOC.

Vì OE=OF=OG=OH=h

và:AC=m;OA=OC-->OA=OC=m/2

tg tự với DB=n;DO=DB ta cũng có:

DO=OB=n/2

Xét tam giác vuông AOB (O= 90 độ do hình thoi có 2 đg chéo vuông góc)

và OF là đường cao có:

1/OF=1/OA^2+1/OB^2

-->1/h^2=1/\(\left(\frac{m}{2}\right)\)^2+1/(n/2)^2                        (1)

CM tương tự vs các tam giác vuông còn lại đều đc kquar như trên đánh số (1),(2),(3),(4)

Cộng (1),(2), (3),(4) ta đc:4/h^2 =16/m^2+16/n^2

Chia cả  2 vế cho 16 ta đc điều phải cm

Bình luận (0)
QT
Xem chi tiết
TJ
Xem chi tiết
QT
Xem chi tiết
M1
Xem chi tiết
TN
Xem chi tiết
TC
Xem chi tiết
AH
11 tháng 9 2021 lúc 15:51

Lời giải:
Vì $ABCD$ là hình thoi nên $AC\perp BD$ tại $O$ và $AC,BD$ cắt nhau tại trung điểm $O$ của mỗi đường

$\Rightarrow AO=\frac{AC}{2}=\frac{m}{2}; DO=\frac{BD}{2}=\frac{n}{2}$

Xét tam giác $AOD$ vuông tại $O$, áp dụng hệ thức lượng trong tam giác vuông:

$\frac{1}{d(O, AD)^2}=\frac{1}{OA^2}+\frac{1}{OD^2}$

$\Leftrightarrow \frac{1}{h^2}=\frac{1}{(\frac{m}{2})^2}+\frac{1}{(\frac{n}{2})^2}=\frac{4}{m^2}+\frac{4}{n^2}$

$\Leftrightarrow \frac{1}{4h^2}=\frac{1}{m^2}+\frac{1}{n^2}$ (đpcm)

Bình luận (0)
AH
11 tháng 9 2021 lúc 15:53

Hình vẽ:

Bình luận (0)
KN
Xem chi tiết
SM
Xem chi tiết