Những câu hỏi liên quan
H24
Xem chi tiết
H24
3 tháng 1 2023 lúc 18:34

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Bình luận (0)
DT
3 tháng 1 2023 lúc 18:36

Lời giải:

Đặt ⎧⎪⎨⎪⎩3a+b−c=x3b+c−a=y3c+a−b=z{3a+b−c=x3b+c−a=y3c+a−b=z

Khi đó, điều kiện đb tương đương với:

(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24(x+y+z)3=24+x3+y3+z3⇔3(x+y)(y+z)(x+z)=24

⇔3(2a+4b)(2b+4c)(2c+4a)=24⇔3(2a+4b)(2b+4c)(2c+4a)=24

⇔(a+2b)(b+2c)(c+2a)=1⇔(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Bình luận (0)
CK
Xem chi tiết
HN
10 tháng 8 2016 lúc 17:07

Hình như đề sai ,  giả sử a = b = c = 0

=> vế trái bằng 0 , vé phải bằng 24

Bình luận (0)
H24
10 tháng 8 2016 lúc 17:14

\(\left(3a+b-c\right)^3+\left(3b+c-a\right)^3+\left(3c+a-b\right)^3+24\)
\(=24+27a^3+27b^3+27c^3+3\left(\left(3a+b\right)\left(3a-c\right)\left(b-c\right)+\left(3b+c\right)\left(3b-a\right)\left(c-a\right)+\left(3c+a\right)\left(3c-b\right)\left(a-b\right)\right)\)\(\left(3a+3b+3c\right)^3=27a^3+27b^3+27c^3+81\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
\(\Rightarrow8+A=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Bình luận (0)
LK
5 tháng 8 2017 lúc 21:57

Có lẻ như đề sai ,

 giả sử a = b = c = 0

=> vế trái bằng 0 ,

vế phải bằng 24

Bình luận (0)
H24
Xem chi tiết
DT
Xem chi tiết
NC
21 tháng 10 2019 lúc 0:13

Câu hỏi của Hoàng Đức Thịnh - Toán lớp 8 - Học toán với OnlineMath

Bình luận (0)
 Khách vãng lai đã xóa
HT
Xem chi tiết
H24
20 tháng 10 2019 lúc 17:09

Đặt \(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

\(\left(x+y+z\right)^3=24+x^3+y^3+z^3\)

\(\Leftrightarrow3.\left(x+y\right).\left(x+z\right).\left(x+z\right)=24\)

\(\Rightarrow3.\left(2a+4b\right).\left(2b+4c\right).\left(2c+4a\right)=24\)

\(\Rightarrow\left(a+2b\right).\left(b+2c\right).\left(c+2a\right)=1\)

Do đó ta có đpcm

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
PT
Xem chi tiết
MT
1 tháng 5 2020 lúc 21:02

cho.mình..nha

Bình luận (0)
 Khách vãng lai đã xóa
H24
1 tháng 5 2020 lúc 21:09

đặt\(\hept{\begin{cases}3a+b-c=x\\3b+c-a=y\\3c+a-b=z\end{cases}}\)

Khi đó điều kiện đb tương ứng

(x+y+z)3=24+x3+y3+z3(x+y+z)3=24+x3+y3+z3

⇔3(x+y)(x+z)(x+z)=24⇔3(x+y)(x+z)(x+z)=24

⇒3(2a+4b)(2b+4c)(2c+4a)=24⇒3(2a+4b)(2b+4c)(2c+4a)=24

⇒(a+2b)(b+2c)(c+2a)=1⇒(a+2b)(b+2c)(c+2a)=1

Do đó ta có đpcm

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
HD
1 tháng 5 2020 lúc 21:16

Trả lời :

Bn Mai Huy Trường ko đc bình luận linh tinh.

- Hok tốt !

^_^

Bình luận (0)
 Khách vãng lai đã xóa
TH
Xem chi tiết
AH
29 tháng 8 2019 lúc 13:28

Lời giải:

Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)

Với (1):\(\Leftrightarrow ab+bc+ac=0\)

\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)

Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)

\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)

Vậy...........

Bình luận (1)
AH
27 tháng 8 2019 lúc 17:20

Lời giải:

Đặt $ab=x,bc=y, ca=z$. Điều kiện đề bài tương đương với: Cho $x,y,z\neq 0$ thỏa mãn:
\(x^3+y^3+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3-3xy(x+y)+z^3=3xyz\)

\(\Leftrightarrow (x+y)^3+z^3-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)[(x+y)^2-z(x+y)+z^2]-3xy(x+y+z)=0\)

\(\Leftrightarrow (x+y+z)(x^2+y^2+z^2-xy-yz-xz)=0\)

\(\Rightarrow \left[\begin{matrix} x+y+z=0(1)\\ x^2+y^2+z^2-xy-yz-xz=0(2)\end{matrix}\right.\)

Với (1):\(\Leftrightarrow ab+bc+ac=0\)

\(A=(1+\frac{a}{b})(1+\frac{b}{c})(1+\frac{c}{a})=\frac{(a+b)(b+c)(c+a)}{abc}=\frac{(ab+bc+ac)(a+b+c)-abc}{abc}=\frac{0-abc}{abc}=-1\)

Với (2) \(\Leftrightarrow \frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}=0\)

\(\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2=0\)

Ta thấy $(x-y)^2; (y-z)^2; (z-x)^2\geq 0, \forall x,y,z$ nên để tổng của chúng bằng $0$ thì:

\((x-y)^2=(y-z)^2=(z-x)^2=0\Rightarrow x=y=z\)

\(\Leftrightarrow ab=bc=ac\Leftrightarrow a=b=c\) (do $a,b,c\neq 0$)

\(\Rightarrow A=(1+1)(1+1)(1+1)=8\)

Vậy...........

Bình luận (0)
PA
Xem chi tiết
AH
4 tháng 8 2017 lúc 22:45

Lời giải:

Đặt \(\left\{\begin{matrix} 3a+b-c=x\\ 3b+c-a=y\\ 3c+a-b=z\end{matrix}\right.\)

Khi đó, điều kiện đb tương đương với:

\((x+y+z)^3=24+x^3+y^3+z^3\Leftrightarrow 3(x+y)(y+z)(x+z)=24\)

\(\Leftrightarrow 3(2a+4b)(2b+4c)(2c+4a)=24\)

\(\Leftrightarrow (a+2b)(b+2c)(c+2a)=1\)

Do đó ta có đpcm.

Bình luận (0)
H24
Xem chi tiết