1.Rút gọn biểu thức `P=(x+4)^2+(x+5)(x-5)-2x(x+1)`
2.Tính giá trị biểu thức `Q=xy-4y-5x+20 với x=14;y=5,5`
1.Rút gọn biểu thức `P=(x+4)^2+(x+5)(x-5)-2x(x+1)`
2.Tính giá trị biểu thức `Q=xy-4y-5x+20 với x=14;y=5,5`
\(P=x^2+8x+16+x^2-25-2x^2-2x=6x-9\\ Q=y\left(x-4\right)-5\left(x-4\right)=\left(y-5\right)\left(x-4\right)\\ Q=\left(5,5-5\right)\left(14-4\right)=0,5\cdot10=5\)
Rút gọn biểu thức x 2 + 10 x + 25 - 5 - x với x < -5 ta được:
A. −1
B. 1
C. 2
D. −2
Rút gọn biểu thức 3x + 2 (5 – x ) ta được
A.x+10. B. x - 10. C.x +5. D. 5 -x
Rút gọn biểu thức A = 5 ( x + 4 ) 2 + 4 ( x – 5 ) 2 – 9 ( 4 + x ) ( x – 4 ) , ta được
A. 342
B. 243
C. 324
D. -324
Ta có
A = 5 ( x + 4 ) 2 + 4 ( x – 5 ) 2 – 9 ( 4 + x ) ( x – 4 ) = 5 ( x 2 + 2 . x . 4 + 16 ) + 4 ( x 2 – 2 . x . 5 + 5 2 ) – 9 ( x 2 – 4 2 ) = 5 ( x 2 + 8 x + 16 ) + 4 ( x 2 – 10 x + 25 ) – 9 ( x 2 – 4 2 ) = 5 x 2 + 40 x + 80 + 4 x 2 – 40 x + 100 – 9 x 2 + 144 = ( 5 x 2 + 4 x 2 – 9 x 2 ) + ( 40 x – 40 x ) + ( 80 + 100 + 144 )
= 324
Đáp án cần chọn là: C
Rút gọn các biểu thức sau: x + 22 + (-14)
x + 22 + (-14) = x + [22 + (-14)]
= x + (22 -14) = x + 8
tính
\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
rút gọn biểu thức
A=\(\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
a, \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{14-6\sqrt{5}}\)
\(=\left|2-\sqrt{5}\right|+\sqrt{\left(\sqrt{5}\right)^2-2\cdot\sqrt{5}\cdot3+3^2}\)
\(=\sqrt{5}-2+\sqrt{\left(\sqrt{5}-3\right)^2}\)
\(=\sqrt{5}-2+\left|\sqrt{5}-3\right|\)
\(=\sqrt{5}-2+3-\sqrt{5}\)
\(=1\)
b, (ĐKXĐ: x ≥ 0; x ≠ 1)
\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5}{x-\sqrt{x}+3\sqrt{x}-3}+\dfrac{\sqrt{x}-1}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-5}{\sqrt{x}\left(\sqrt{x}-1\right)+3\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{3\sqrt{x}+5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
#\(Toru\)
a: \(=\sqrt{5}-2+3-\sqrt{5}=3-2=1\)
b:
ĐKXĐ: \(x\ge0,x\ne1\)
\(A=\dfrac{x-5+\sqrt{x}-1+2\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{x+\sqrt{x}-6+2\sqrt{x}+6}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(5\sqrt{x^2+9}+2\sqrt{x}=\frac{x^2}{2}+\frac{x}{2}+19\)
Rút gọn biểu thức mn giúp miình ới
i love you
hãy trả lời câu hỏi của nàng tiên xinh đẹp
hình như là gpt :v
\(5\sqrt{x^2+9}+2\sqrt{x}=\frac{x^2}{2}+\frac{x}{2}+19\)
ĐK:\(x\ge0\)
\(pt\Leftrightarrow5\sqrt{x^2+9}-25+2\sqrt{x}-4=\frac{x^2}{2}+\frac{x}{2}-10\)
\(\Leftrightarrow\frac{25\left(x^2+9\right)-625}{5\sqrt{x^2+9}+25}+\frac{4x-16}{2\sqrt{x}+4}=\frac{x^2+x-20}{2}\)
\(\Leftrightarrow\frac{25x^2-400}{5\sqrt{x^2+9}+25}+\frac{4x-16}{2\sqrt{x}+4}-\frac{x^2+x-20}{2}=0\)
\(\Leftrightarrow\frac{25\left(x-4\right)\left(x+4\right)}{5\sqrt{x^2+9}+25}+\frac{4\left(x-4\right)}{2\sqrt{x}+4}-\frac{\left(x-4\right)\left(x+5\right)}{2}=0\)
\(\Leftrightarrow\left(x-4\right)\left(\frac{25\left(x+4\right)}{5\sqrt{x^2+9}+25}+\frac{4}{2\sqrt{x}+4}-\frac{\left(x+5\right)}{2}\right)=0\)
Suy ra x=4
RÚT GỌN BIỂU THỨC:
14) \(A = \dfrac{x\sqrt{x} + 1}{x - 1} - \dfrac{x - 1}{\sqrt{x} + 1}\)
\(A=\dfrac{x\sqrt{x}+1-\left(x-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
\(A=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}\) (ĐK: \(x\ge0;x\ne1\))
\(A=\dfrac{\left(\sqrt{x}\right)^3+1^3}{\left(\sqrt{x}\right)^2-1^2}-\dfrac{\left(\sqrt{x}\right)^2-1^2}{\sqrt{x}+1}\)
\(A=\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}+1}\)
\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}-\left(\sqrt{x}-1\right)\)
\(A=\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}-\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
\(A=\dfrac{x-\sqrt{x}+1-\left(\sqrt{x}-1\right)^2}{\sqrt{x}-1}\)
\(A=\dfrac{x-\sqrt{x}+1-x+2\sqrt{x}-1}{\sqrt{x}-1}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
A = \(\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
Cho biểu thức: P =
a) Rút gọn biểu thức P
b) Tính giá trị của P với x = 14-6
ĐK: \(\left\{{}\begin{matrix}x-2\sqrt{x}-3\ne0\\\sqrt{x}+1\ne0\\3-\sqrt{x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)\ne0\\\sqrt{x}+1\ne0\left(hiển-nhiên\right)\\x\ne\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow x\ne\sqrt{3}\)
\(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt[]{x}-3}-\dfrac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(\Leftrightarrow\dfrac{x\sqrt{x}-3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(-\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\dfrac{x\sqrt{x}-3-2\left(x-9\right)-x-\sqrt{x}-3\sqrt{x}-3}{\left(\sqrt{x+1}\right)\left(\sqrt{x}-3\right)}\)
\(\Leftrightarrow\dfrac{\left(x-4\right)\sqrt{x}-3x+12}{\left(\sqrt{x+1}\right)\left(\sqrt{x}-3\right)}\)
Chúc bạn học tốt ^^
rút gọn rồi tính giá trị của biểu thức sau với x=-19 A=(3x+2)^2+(2x-7)^2-2(3x+2)(2x+5)
Sửa: \(A=\left(3x+2\right)^2+\left(2x-7\right)^2-2\left(3x+2\right)\left(2x-7\right)\)
\(A=\left(3x+2\right)^2-2\left(3x+2\right)\left(2x-7\right)+\left(2x-7\right)^2\)
\(A=\left[\left(3x+2\right)-\left(2x-7\right)\right]^2\)
\(A=\left(3x+2-2x+7\right)^2\)
\(A=\left(x+9\right)^2\)
Thay \(x=-19\) vào A ta có:
\(A=\left(-19+9\right)^2=\left(-10\right)^2=100\)
Vậy: ...