gpt:
\(\sqrt{x-1}+7\sqrt{6-x}=15\)
gpt: \(\sqrt{x-1}+7\sqrt{6-x}=15\)
đkxđ \(1\le x\le6\)
đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{6-x}=b\left(b\ge0\right)\)
ta thấy \(a^2+b^2=5\)
ta suy ra hệ phương trình
\(\left\{{}\begin{matrix}a+7b=15\left(1\right)\\a^2+b^2=5\left(2\right)\end{matrix}\right.\)
rút pt (1) thế pt(2) ta có
\(\left(15-7b\right)^2+b^2=5\)
\(\Leftrightarrow50b^2-210b+220=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=\dfrac{11}{5}\Rightarrow a=-\dfrac{2}{5}\left(l\right)\\b=2\Rightarrow a=1\left(n\right)\end{matrix}\right.\)
\(\)\(a=1\Rightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(tm\right)\)
thay x=2 thấy b=2
vậy pt có nghiệm là x=2
Lời giải:
ĐKXĐ: \(1\leq x\leq 6\)
Ta có:
\(\sqrt{x-`1}+7\sqrt{6-x}=15\)
\(\Leftrightarrow 7\sqrt{6-x}=15-\sqrt{x-1}\)
\(\Rightarrow 49(6-x)=225+x-1-30\sqrt{x-1}\) (bp hai vế)
\(\Leftrightarrow 50x-30\sqrt{x-1}-70=0\)
\(\Leftrightarrow 5x-3\sqrt{x-1}-7=0\)
\(\Leftrightarrow 5(x-1)-3\sqrt{x-1}-2=0\) Đặt \(\sqrt{x-1}=t(t\geq 0)\)
Khi đó: \(5t^2-3t-2=0\Leftrightarrow (t-1)(5t+2)=0\Rightarrow t=1\)
vì $t\geq 0$
Do đó: \(x=t^2+1=2\). Thử lại thấy thỏa mãn
GPT: \(\sqrt{25x-25}-\frac{15}{2}\sqrt{\frac{x-1}{9}}=6+\sqrt{x-1}\)
Gpt: \(\sqrt{x+5}+\sqrt{3-x}-2\left(\sqrt{15-2x-x^2}+1\right)=0\)
\(ĐK:-5\le x\le3\)
Đặt \(\sqrt{x+5}+\sqrt{3-x}=t\ge0\Leftrightarrow t^2-8=2\sqrt{15-2x-x^2}\), PTTT:
\(t-t^2+8-2=0\\ \Leftrightarrow t^2-t-6=0\\ \Leftrightarrow t=3\left(t\ge0\right)\\ \Leftrightarrow2\sqrt{15-2x-x^2}=3^2-8=1\\ \Leftrightarrow60-8x-4x^2=1\\ \Leftrightarrow4x^2+8x-59=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+3\sqrt{7}}{2}\left(tm\right)\\x=\dfrac{-2-3\sqrt{7}}{2}\left(tm\right)\end{matrix}\right.\)
Vậy nghiệm pt là ...
1.Gpt: \(\dfrac{6}{x-3\sqrt{x-2}+7}=\dfrac{1}{\sqrt{x-2}}+\dfrac{\sqrt{3}}{3\sqrt{2\sqrt{x-2}}-3}\)
2.Ghpt: \(\left\{{}\begin{matrix}x^2-y-z=0\\x^3-y^2-z^2+2=0\end{matrix}\right.\)
GPT
\(x\sqrt{x}-7\sqrt{x}-6=0\)0
\(x\sqrt{x}-7\sqrt{x}-6=0\)
\(\Leftrightarrow\left(x-7\right)\sqrt{x}-6=0\)
\(\Leftrightarrow\left(\sqrt{x}-3\right)\left(\sqrt{x+1}\right)\left(\sqrt{x+2}\right)=0\)
Loại \(\sqrt{x}=-1;-2\)
\(\sqrt{x}-3=0\Rightarrow\sqrt{x}=3\Leftrightarrow x=9\)
GPT : \(\sqrt{\sqrt{x}+1-2\sqrt[4]{x}}+\sqrt{\sqrt{x}+9-6\sqrt[4]{x}}=2\)
ĐKXĐ:\(x\ge0\)
\(\Leftrightarrow\sqrt{\left(\sqrt[4]{x}-1\right)^2}+\sqrt{\left(\sqrt[4]{x}-3\right)^2}=2\)
\(\Leftrightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|=2\)
Ta có: \(\left|\sqrt[4]{x}-1\right|\ge\sqrt[4]{x}-1;\left|\sqrt[4]{x}-3\right|\ge3-\sqrt[4]{x}\)
\(\Rightarrow\left|\sqrt[4]{x}-1\right|+\left|\sqrt[4]{x}-3\right|\ge\sqrt[4]{x}-1+3-\sqrt[4]{x}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|\sqrt[4]{x}-1\right|=\sqrt[4]{x}-1\\\left|\sqrt[4]{x}-3\right|=3-\sqrt[4]{x}\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt[4]{x}-1\ge0\\\sqrt[4]{x}-3\le0\end{cases}\Leftrightarrow}\hept{\begin{cases}\sqrt[4]{x}\ge1\\\sqrt[4]{x}\le3\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge1\\x\le81\end{cases}\left(TMĐKXĐ\right)}}\)
Gpt: \(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) (2 cách)
Cách 1:
GPT :\(5\sqrt{x-1}-\sqrt{x+7}=3x-4\) - Hoc24
Cách 2:
Đặt \(\left\{{}\begin{matrix}\sqrt{25x-25}=a\\\sqrt{x+7}=b\end{matrix}\right.\) \(\Rightarrow3x-4=\dfrac{a^2-b^2}{8}\)
Pt trở thành:
\(a-b=\dfrac{a^2-b^2}{8}\)
\(\Leftrightarrow\left(a-b\right)\left(a+b-8\right)=0\)
\(\Leftrightarrow...\)
gpt \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
\(\sqrt{x+2\sqrt{x-2}}-\sqrt{x-2\sqrt{x-2}}=-2\)
\(=\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{x+7-\sqrt{x+7}-6}=4\)ĐK:\(x\ge-7\)
Đặt \(t=\sqrt{x+7}\left(t\ge0\right)\)
\(\Rightarrow t+1-4=\sqrt{t^2-t-6}\)
\(\Leftrightarrow t^2-6t+9=t^2-t-6\left(t\ge3\right)\)
\(\Leftrightarrow5t=15\)
\(\Leftrightarrow t=3\left(TM\right)\)\(\Rightarrow x=2\left(tm\right)\)
S={2}
b)ĐK:\(x\ge2\)
pt\(\Leftrightarrow\sqrt{x-2+2\sqrt{x-2}+2}-\sqrt{x-2-2\sqrt{x-2}+2}=-2\)
Đặt t= can(x-2)(t>=0)
Đến đây bạn giải tiếp nhé!
#Walker
GPT:
\(\sqrt{x^2-x+19}+\sqrt{7x^2+8x+13}+\sqrt{13x^2+17x+7}-3\sqrt{3}x=6\sqrt{3}\)
cai nay la hag dag thuc phan tih ra la dk
pt<=>căn((x-1/2)^2+75/4)+căn(2(x-1/2)^2+3(x+2)^2)+căn((x-1/2)^2+3(2x+3/2)^2)>=3*căn3(x+2)
dấu = xãy ra khi x=1/2