đkxđ \(1\le x\le6\)
đặt \(\sqrt{x-1}=a\left(a\ge0\right);\sqrt{6-x}=b\left(b\ge0\right)\)
ta thấy \(a^2+b^2=5\)
ta suy ra hệ phương trình
\(\left\{{}\begin{matrix}a+7b=15\left(1\right)\\a^2+b^2=5\left(2\right)\end{matrix}\right.\)
rút pt (1) thế pt(2) ta có
\(\left(15-7b\right)^2+b^2=5\)
\(\Leftrightarrow50b^2-210b+220=0\)
\(\Leftrightarrow\left[{}\begin{matrix}b=\dfrac{11}{5}\Rightarrow a=-\dfrac{2}{5}\left(l\right)\\b=2\Rightarrow a=1\left(n\right)\end{matrix}\right.\)
\(\)\(a=1\Rightarrow\sqrt{x-1}=1\Leftrightarrow x=2\left(tm\right)\)
thay x=2 thấy b=2
vậy pt có nghiệm là x=2
Lời giải:
ĐKXĐ: \(1\leq x\leq 6\)
Ta có:
\(\sqrt{x-`1}+7\sqrt{6-x}=15\)
\(\Leftrightarrow 7\sqrt{6-x}=15-\sqrt{x-1}\)
\(\Rightarrow 49(6-x)=225+x-1-30\sqrt{x-1}\) (bp hai vế)
\(\Leftrightarrow 50x-30\sqrt{x-1}-70=0\)
\(\Leftrightarrow 5x-3\sqrt{x-1}-7=0\)
\(\Leftrightarrow 5(x-1)-3\sqrt{x-1}-2=0\) Đặt \(\sqrt{x-1}=t(t\geq 0)\)
Khi đó: \(5t^2-3t-2=0\Leftrightarrow (t-1)(5t+2)=0\Rightarrow t=1\)
vì $t\geq 0$
Do đó: \(x=t^2+1=2\). Thử lại thấy thỏa mãn