Cho số thực x>=0. Hãy so sánh sqrt(x) với x
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho số thực x\(\ge\)0 .Hãy so sánh căn x với x
\(\sqrt{x}=x\) nếu \(x=0\)hoặc \(x=1\)
\(\sqrt{x}< x\)nếu \(x>0\)
Giải
Vì x\(\ge\)0 nên √x \(\ge\)0
Từ đó ta có 3 trường hợp
√x=x \(\Leftrightarrow\)x=x^2 \(\Leftrightarrow\)x-x^2 =0 <=> x(1-x)=0 <=> x=0 hoặc x=1
√x< x <=>.x<x^ 2. <=>. x-x^2 < 0 <=>. x(1-x) < 0 <=> x>1
√x>x. <=> x>x^2. <=> x-x^2 > 0. <=> x(1- x) >0. <=> 0<x<1
Vậy nếu x=0 hoặc x=1 thì √x=x
Nếu x>1 thì √x<x
Nếu 0<x<1 thì √x>x
Mình biết mình viết khá là khó hiểu nên có gì thắc mắc bạn hãy nhắn tin cho mk nha ﹋o﹋
Nguyễn Thị Ninh: bạn làm phương pháp ntn vậy? Vì sao két quả lại so sánh như thế?
Cho số thực \(x\ge0\).Hãy so sánh \(\sqrt{x}\) với \(x\)
\(\sqrt{x}< x\)
vì \(\left(\sqrt{x}\right)^2=x\)với \(\forall\)\(x\ge0\)
học tốt
Vì: \(x\ge0\) nên \(\sqrt{x}\ge0\)
+) \(\sqrt{x}=x\Leftrightarrow x=x^2\Leftrightarrow x-x^2=0\Leftrightarrow x\left(1-x\right)=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
+) \(\sqrt{x}< x\Leftrightarrow x< x^2\Leftrightarrow x-x^2< 0\Leftrightarrow x\left(1-x\right)< 0\Leftrightarrow x>1\)
+) \(\sqrt{x}>x\Leftrightarrow x>x^2\Leftrightarrow x-x^2>0\Leftrightarrow x\left(1-x\right)>0\Leftrightarrow0< x< 1\)
Vậy: Nếu \(x=0\) thì \(x=1\) hoặc \(\sqrt{x}=x\)
Nếu \(x>1\) thì \(\sqrt{x}< x\)
Nếu \(0< x< 1\) thì \(\sqrt{x}>x\)
=.= hok tốt!!
Với x ≥ 0 ; x ≠ 9. Cho P=\(\dfrac{\sqrt{x}+3}{\sqrt{x}+8}\)
a. So sánh P với 1, so sánh P với 2
b. Với x ≥ 0 ; x ≠ 9. Chứng minh P>P2
c. Tìm x để 2P2<P
Mong các bạn giúp
Thanks
c) Bạn biến đổi ra được P < 1/2, từ đó bạn tìm được x < 4. Kết hợp ĐKXĐ thì được 0<=x<4
cho M=\((\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1})\div\frac{\sqrt{x}}{\sqrt{x}+x}(x>0)\)
so sánh M vs số 0
1)so sánh 2 số sau M=\(\sqrt{18}-\sqrt{8}\) và N=\(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
2)cho biểu thức A=\((\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}):(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}})\) với x>0,\(x\ne4\),\(x\ne9\)
câu 2 rút gọn A và tìm các giá trị nguyên của x để A nhận giá trị âm
1) So sánh:
N = \(\dfrac{5+\sqrt{5}}{\sqrt{5}+1}-\sqrt{6-2\sqrt{5}}\)
\(=\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}-\left(\sqrt{5}-1\right)=1\)
M = \(\sqrt{18}-\sqrt{8}\)
\(=3\sqrt{2}-2\sqrt{2}\)
\(=\sqrt{2}\)
Ta có: \(1=\sqrt{1}\)
Mà 1 < 2
\(\Rightarrow\sqrt{1}< \sqrt{2}\)
Hay 1 \(< \sqrt{2}\)
Vậy N < M
2) Với \(x>0;x\ne4;x\ne9\), ta có:
A = \(\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{2x}{9-x}\right):\left(\dfrac{x-4}{x-3\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]:\left[\dfrac{x-4}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]\)
\(=\dfrac{x-3\sqrt{x}-2x}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\dfrac{x-4-2\sqrt{x}+6}{\sqrt{x}\left(\sqrt{x-3}\right)}\)
\(=\dfrac{-x-3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-2\sqrt{x}+2}\)
\(=\dfrac{-x}{x-2\sqrt{x}+2}\)
Cho A= \(\dfrac{x-\sqrt{x}+1}{\sqrt{x}-1}\)và B= \(\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\)
a) rút gọn B
b) Cho x>0. so sánh A với 3
\(a,B=\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{x+\sqrt{x}-6}\left(x>0;x\ne6\right)\\ =\dfrac{\sqrt{x}+1}{\sqrt{x}-2}+\dfrac{2}{\sqrt{x}+3}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}+\dfrac{2\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-2\right)}-\dfrac{9\sqrt{x}-3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x+3\sqrt{x}+\sqrt{x}+3+2\sqrt{x}-4-9\sqrt{x}+3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{x-3\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\\)
\(=\dfrac{x-\sqrt{x}-2\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)-2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}\\ =\dfrac{\sqrt{x}-1}{\sqrt{x}+3}\)
`b,` Tớ tính mãi ko ra, xl cậu nha=')
cho biểu thức : P = 1:(\(\frac{X+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{x-1}\)) (0<=x<>1)
a, RÚT GỌN P
b, SO SÁNH P VỚI 3
c, HÃY TÌM GTNH CỦA BIỂU THỨC P ĐÃ RÚT GỌN
* Cho biểu thức
M=\(\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\), với x>0 và x≠1
a. Thu gọn M
b. Giải phương trình M=2
c. So sánh M và 1
a: Ta có: \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{2\sqrt{x}-1}{x-\sqrt{x}}\)
\(=\dfrac{x-2\sqrt{x}+1}{x-\sqrt{x}}\)
\(=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)
b:Để M=2 thì \(\sqrt{x}-1=2\sqrt{x}\)
\(\Leftrightarrow\sqrt{x}=-1\left(loại\right)\)
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\); \(x\ge0,x\ne1\).
a) Rút gọn P.
b) Tìm x để \(P=\sqrt{x}\).
c) Với x > 1, hãy so sánh P và \(\sqrt{P}\).
a) Ta có: \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)