Tính tổng A= 1.2 + 2 .3 + 3 .4 +...+(n - 1 )n .( 1)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Bài 1 : Tính tổng
1+2+3+4+....+n
Bài 2 : Tính A = 1.2+2.3+3.4+....+(n-1).n
Bài 3 Tính A = 1.3+2.4+3.5+.....+(n-1).(n+1)
câu 1
Câu hỏi của Ngọc Hà - Toán lớp 6 - Học toán với OnlineMath
a, tính tổng:1+2+3+...+n ,1+3+5+...+(2n-1)
b, tính tổng: 1.2+2.3+3.4+...+n.(n+1)
1.2.3+2.3.4+3.4.5+...+n(n+1).(n+2)
a; A =1 + 2 +3+ 4+ 5+ ... +n
Xét dãy số 1; 2; 3; 4;5;...;n
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (n - 1) : 1 + 1 = n (số số hạng)
Tổng của dãy số trên là: (n + 1).n x 2
A = (n + 1).n:2
B = 1 + 3 + 5+ 7+ ...+ (2n - 1)
Dãy số trên là dãy số cách đều với khoảng cách là:
3 - 1 = 2
Số số hạng của dãy số trên là: (2n - 1 - 1) : 2 + 1 = n
Tổng của dãy số trên là: (2n - 1 + 1) x n : 2 = n2
Vậy B = n2
c; C = 1.2 + 2.3 + 3.4 + ...+ n.(n + 1)
C = \(\dfrac{1}{3}\).(1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n+1).3)
C = \(\dfrac{1}{3}\)[1.2.3 + 2.3.(4 -1) + 3.4.(5- 2)+...+n.(n + 1).[(n+2) - (n-1)]
C = \(\dfrac{1}{3}\).[1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n.(n +1)(n+2)-(n-1).n.(n+1)]
C = \(\dfrac{1}{3}\).n.(n+1).(n+2)
a) Tính tổng : 1+ 2 + 3 +…. + n , 1+ 3 + 5 +…. + (2n -1)
b) Tính tổng : 1.2 + 2.3 + 3.4 + …..+ n.(n+1) 1.2.3+ 2.3.4 + 3.4.5 + ….+ n(n+1)(n+2)
Với n là số tự nhiên khác 0.
Các thánh giúp em zới ko hỉu gì hết trơn T-T
a)
*\(1+2+3+...+\left(n-1\right)+n\)
Số số hạng là:
\(\left(n-1\right):1+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(n+1\right)\cdot\dfrac{n}{2}=\dfrac{n\left(n+1\right)}{2}\)
*\(1+3+5+...+\left(2n-1\right)\)
Số số hạng của dãy số là:
\(\left(2n-1-1\right):2+1=\dfrac{\left(2n-2\right)}{2}+1=n-1+1=n\)(số hạng)
Tổng của dãy số là:
\(\left(2n-1+1\right)\cdot\dfrac{n}{2}=\dfrac{2n^2}{2}=2n\)
1. a) Tính tổng :
D = 1.2 + 2.3+ 3.4 +...+ 99.100
b) Chứng minh:
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
= n (n + 1) . (n + 2) : 3 ( với n thuộc N*)
D = 1.2 + 2.3+ 3.4 +...+ 99.100
=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
=99.100.101-0.1.2
=99.100.101
=999900
=>D=999900:3=333300
Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)
=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3
=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]
=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)
=n.(n+1).(n+2)-0.1.2
=n.(n+1)(n+2)
=>Dn=n.(n+1)(n+2):3
=>điều cần chứng minh
a) Tính tổng: 1+2+3+...+n, 1+3+5+...+(2n-1)
b) Tính tổng: 1.2+2.3+3.4+...+n(n+1)
1.2.3+2.3.4+3.4.5+...+n(n+1)(n+2)
Với n là số tự nhiên khác không
a) A =(2n-1+1).(2n-1)/2=2n.(2n-1)/2=n(2n-1)
b) B= 1.2+2.3+3.4+...+n(n+1)
3B=1.2.3+2.3.(4-1)+3.4.(5-2)+...+n(n+1)[(n+2)-(n-1)]
3B=1.2.3-1.2.3+2.3.4-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)
3B=n(n+1)(n+2)
B=n(n+1)(n+2)/3
4C=1.2.3.4+2.3.4.(5-1)+3.4.5(6-2)+...+n(n+1)(n+2).[(n+3)-(n-1)]
4C=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+...+n(n+1)(n+2)(n+3)-(n-1)n(n+1)(n+2)
4C=n(n+1)(n+2)(n+3)
C=n(n+1)(n+2)(n+3)/4
Tính tổng
a) 1.2+2.3+3.4+...+n.(n+1)
b) 12+22+32+...+n2
c) 13+23+33+...+n3
Bài 1: Tính B = 1 + 2 + 3 +...+ 98 + 99
Tìm tổng của dãy số mà các số hạng không cách đềuBài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)
1: Số số hạng là (99-1):1+1=99(số)
Tổng là \(\dfrac{99\cdot\left(99+1\right)}{2}=99\cdot50=4950\)
1:
3*A=1*2*3+2*3*(4-1)+3*4*(5-2)+...+n(n+1)[(n+2)-(n-1)]
=1*2*3-1*2*3+2*3*4-2*3*4+...-(n-1)*n*(n+1)+n(n+1)(n+2)
=n(n+1)*(n+2)
=>\(A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)
Tính giá trị các tổng sau theo n:(n>0)
A=1+2+3+....+n
B=1+3+5+...+(2n+1)
C=1.2+2.3+3.4+.....+n(n+1)
D=1.2.3+2.3.4+3.4.5+....+n(n+1)(n+2)
Tính;
a,1.2+2.3+3.4+...+(n-1).n
b,1^2+2^2+3^2+...+n^2
c,1^3+2^3+3^3+...+n^3
d,1+1.2^2+2.3^2+...+(n-1).n^2
a) Đặt A = 1.2 + 2.3 + ........ + (n-1)n
3A = 1.2.3 + 2.3.(4-1) + .... + (n-1)n[(n+1)-(n-2)]
3A = 1.2.3 + 2.3.4 - 1.2.3 + .... + (n-1)n(n+1) - (n-2)(n-1)n
3A = (1.2.3 - 1.2..3) + ... + (n-1)n(n+1)
A = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)
b) Đặt B = 12 + 22 + ..... + n2
B = 1(2 - 1) + 2(3 - 1) + ..... + n[(n + 1) - 1]
B = 1.2 + 2.3 + .......... + n(n + 1) - (1+2+3+....+n)
B = A - \(\frac{n\left(n+1\right)}{2}\)