3A=1.2.3+2.3.(4-1)+3.4.(5-2)+...+(n-1)n[(n+1)-(n-2)]
3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+(n-1)n(n+1)-(n-2)(n-1)n
3A=(n-1)n(n+1)
A=(n-1)n(n+1)/3
Ta có :
\(A=1.2+2.3+3.4+...+\left(n-1\right).n\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+\left(n-1\right).n.3\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+\left(n-1\right).n.\left[\left(n+1\right)-\left(n-2\right)\right]\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+\left(n-1\right)n.\left(n+1\right)-\left(n-2\right).\left(n-1\right).n\)
\(\Rightarrow3A=\left(n-1\right).n.\left(n+1\right)\)
\(\Rightarrow A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
Vậy \(A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)
P/s : Mik ko chắc
~ Ủng hộ nhé
ta có: \(A=1.2+2.3+3.4+...+\left(n-1\right).n\)
\(\Rightarrow3A=1.2.3+2.3.3+3.4.3+...+\left(n-1\right).n.3\)
\(3A=1.2.\left(3-0\right)+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+\left(n-1\right).n.\left[\left(n+1\right)-[\left(n-1\right)-1]\right]\)
\(3A=1.2.3+2.3.4-1.2.3+3.4.5-2.34+...+\left(n-1\right).n.\left(n+1\right)-\left[\left(n-1\right)-1\right].\left(n-1\right).n\)
\(3A=\left(n-1\right).n.\left(n+1\right)\)
\(A=\frac{\left(n-1\right).n.\left(n+1\right)}{3}\)